ATTACHMENT 6 PROJECT SPECIFICATIONS #### I. AIRPORT SAFETY # A. Regulations - The operation of the airport is regulated by the Federal Aviation Administration and its rules and regulations governing safety shall be enforced. Contractors shall acquaint themselves with FAA Advisory Circular 150/5370-2 current edition Operational Safety On Airports During Construction and abide by operating rules and regulations and shall be responsible for enforcement of those rules and regulations concerning employees, subcontractors and material suppliers. - 2. Failure to observe Safety requirements will be reason to remove Contractors or Subcontractors or their personnel or material from the site. # B. General Safety - 1. The geographical form of open trenches, excavations and stockpiled material shall be outlined with low profile barricades with reflective alternating orange and white markings; flashing or steady red lights; 12'x12' bright orange nylon flags. - 2. Hazardous areas, in which aircraft are not to enter, shall be indicated by use of low profile reflective barricades with alternating orange and white markings placed end to end with a designated gap for vehicle traffic. Barricades may need to be supplemented with orange flags at least 12 by 12 inches square and installed so that they are always in the extended position and properly oriented. The barricades must be supplemented with flashing or steady red lights. Do not use solar lighting on barricades without prior written permission of airport. All batteries must be new at start of project and replaced periodically during project. Low profile barricades shall be weighted down with either water and/or sandbags. It shall be the contractor's responsibility to maintain the flashing lights at all times. If any light is found to be inoperative, it shall be repaired or replaced within 24 hours of notification. - 3. Smoking on aircraft parking ramps or within the confines of a fuel storage area is prohibited. - 4. Welding or torch cutting operations require specific permission of the Airport Fire Department. When permitted, adequate fire suppression equipment must be available in close proximity to the job. - 5. Waste material shall not be permitted to accumulate and create a hazard for aircraft and associated ground support operations and shall be removed from the airport premises on a regular basis. - 6. Debris such as mud, stones, etc. which is inadvertently dropped within aircraft operating areas must be cleaned up immediately. Therefore, construction/repair projects that require motorized equipment to traverse the air operations area will require the contractor to have on site a pick-up broom type mechanical sweeper. - 7. Any utility serving the airport shall not be disconnected without prior approval from airport management. - 8. Runways or taxiways closed for extended periods of time must be marked in accordance with FAA Advisory Circular 150/5340-1 current edition, Standards for Airport Markings. 9. Prior to the first day of work, each contractor, including subcontractors, shall provide a list to the Airport Operations Office of supervisory personnel who will be involved in the project. This list shall contain a 24 hour telephone number of those persons who should be called in the event of an emergency during evenings and weekends. # C. Personnel Safety - Contractor will advise their employees to remain within the limits of the designated work area and the routes to be used for access to and from the job site. Access routes to and from the job site will be determined by airport management. - 2. Contractor will be required to provide his/her employees with proper hearing and other safety protection devices as appropriate. # D. Vehicle Safety - No person shall operate a motorized vehicle on airport property without a valid stateissued Vehicle Operator's License. - 2. No vehicle shall be operated in a reckless or negligent manner. - 3. No person shall operate a motor vehicle under the influence of alcohol or narcotic drugs. - 4. No vehicle shall be operated which may be considered to be overloaded or carrying more passengers than the vehicle was designed to carry. - 5. No vehicle shall be operated on the airport that is constructed, equipped, or loaded in a manner considered dangerous to persons or property. - 6. No vehicle shall be operated on the airport with someone riding on the running board, or standing up in the open body of the vehicle. - 7. No vehicle shall be operated in excess of posted speed limits. - 8. All vehicles, when not in use, shall be parked in designated parking locations. - 9. No person shall operate motorized ground equipment on the Air Operations Area (AOA) of the airport without an airport-issued driver's endorsement unless they are escorted (physically or visually) by an authorized person. - The operation of motorized vehicles on the Air Operations Area shall be in accordance with the Airport Operations IET system for driving in the non-movement areas of the Airport. - 11. All vehicles operating on the Air Operations Area shall display a three (3) foot by three (3) foot flag consisting of alternating international orange and white squares of not less than one (1) foot on each side. The flag shall be displayed in full view at the highest point on the vehicle. An amber flashing light affixed to the top of the vehicle may be used in lieu of a flag. - 12. Vehicles and equipment parked on or near an air operations area during hours of darkness or restricted visibility shall be outlined through the use of low profile reflective barricades with flashing red lights. No solar lights on barricades without prior written permission of airport. All batteries must be new at start of project and replaced periodically during project. - 13. When parking adjacent to an active runway, all vehicles and equipment must be parked parallel to the runway and at least 125 feet outside of the runway lights. - 14. Whenever vehicles are required to cross or operate on the movement area (runways and taxiways) effective control procedures shall be established prior to the first day of work. No vehicle will be permitted to cross or operate on an open runway without specific permission obtained through two-way radio communications with the Control Tower. Vehicle control requirements and procedures will be discussed at the preconstruction meeting. - 15. All non-radio vehicles that require access to the movement area of the airport must be escorted by a person specifically designated by airport management. - 16. Cranes and other high profile construction equipment shall be reduced to their lowest profile when not in use. #### II. AIRPORT SECURITY New applications - \$75.00 (Includes badge, issues or not) New fingerprints - \$25.00 Total = \$100.00 Renewal applications – \$25.00 Renewal fingerprints - \$25.00 Total = \$50.00 Fees to replace Lost, Stolen*, or Destroyed ID's: 1st - \$75.00 2nd - \$125.00 3rd - \$200.00 *Stolen ID's accompanied by a valid police report will incur a \$25.00 charge for the 1st ID, \$50.00 charge for the 2nd ID, \$100.00 charge for the 3rd ID. Not Returned ID Fee (may be assessed against the company or the individual, and is refundable if turned in): 1st - \$100.00 2nd - \$150.00 3rd and subsequent - \$200.00 These fees are cumulative for a company. For example, company X has three employees that do not return ID's, the fees would total \$450.00 for each additional ID not returned. After that it would be \$200.00 each. If company X has a total of nine not retuned ID's, the total would be \$1650.00. However, if 4 of those ID's were returned, a credit of \$800.00 would be processed. If all of the ID's are returned, then a complete refund would be due, and the next Not returned ID would incur a \$100.00 fee, etc. If an individual returns the ID, a credit would be processed against their credit card, if that is how it was paid for initially, or by a check payable to them in about 4 weeks from the date of return. #### A. General Security - 1. The operation of the airport is regulated by the Federal Aviation Administration (FAA) and the Transportation Security Administration (TSA). The security rules and regulations established by these agencies shall be enforced. Contractors shall acquaint themselves with these rules and regulations and will be held accountable to ensure that all employees, subcontractors, and material suppliers abide by them. - 2. The FAA and TSA have established civil penalty policies whereby monetary penalties may be assessed against individuals, companies, airlines, airports, or any combination thereof. These penalties range from \$1,000.00 to \$25,000.00 per violation. Any penalties assessed against General Mitchell International Airport by the FAA or the TSA as a result of negligence, or failure to adhere to established policies or procedures on the part of a contractor, subcontractor, material supplier or their employees, will be assessed to the prime contractor. - 3. Failure to adhere to security rules and regulations will be reason to remove contractors or subcontractors or their personnel or material from the site. - 4. All vehicles and personnel are subject to search at any time. - B. Regulations - 1. 49 Code of Federal Regulations (CFR) 1542 is the governing regulation that requires each airport operator to establish and maintain, in writing, a security program that addresses, among other things, the conduct of required background checks and the establishment of an identification and access control system. This regulation further requires that a training program be established, and that everyone that applies for an airport issued identification/access media badge be trained in certain airport security procedures. General Mitchell International Airport accomplishes this by requiring everyone to view a security training video and pass a written test. This information is provided in English only and, if needed, special
arrangements must be made with the Airport Badging Office (747-4537) to have an interpreter present to assist in the administration of this requirement. - 2. 49 CFR 1520 establishes the requirement to safeguard information obtained as a result of this training. The information that is provided is considered Sensitive Security Information (SSI) and is therefore only to be discussed with persons that have a "need to know." Additional federal penalties can be assessed against personnel for the unauthorized disclosure of this information. - 3. Milwaukee County Ordinance 4.02(8)(c)(8) states: "Airport-issued Personnel Identification Badges are the property of the County. They must be returned to the Airport upon Revocation, Suspension, ending employment at the Airport or upon demand of the County." Failure to return Identification badges may delay or impact the final payment of the contract. # C. Badging Procedures - 1. All companies (prime and subcontractors) that conduct business at General Mitchell International Airport must have an MKE Company Registration Information & Authorization form on file with the airport. This form can be obtained from the Airport Badging Office (Monday Friday, 8:00 a.m. to 4:30 p.m., excluding holidays). This form must be completed by the company and returned to the Airport Badging Office for further processing. This process can take 7 business days or more to complete. This form must be completed for each individual airport project, unless there is a break of 90 days or less between projects where the company is doing business. - 2. All companies (prime and subcontractors) conducting business in any security area of the airport, as defined in the Airport Security Program (ASP) except as noted in paragraphs D. and E. below are required to obtain an airport issued identification/access media badge, hereinafter referred to as badge, for **each** of their employees. To obtain a badge for each employee, the employer must complete a MKE Authorized Signatory Designation form. This form can be obtained from the Airport Badging Office, during the same days and hours as previously noted. This form must be completed by an officer of the company that has responsibility for ensuring that the procedures on the form can and will be adhered to. This person can then appoint other personnel in the organization to be Authorized Signers for airport badge application forms. - 3. An Authorized Signer must complete an airport Badge application form and then successfully pass a fingerprint based Criminal History Records Check (CHRC) and a Security Threat Assessment (STA), and must sign and date an Authorized Signer training form before they can sign the application form for other employees to start the badging process. - 4. Criminal History Records Check (CHRC) procedure for each individual consists of the following: - a. Complete a Criminal History Records Check Application form. - b. Provide two forms of identification (these can be the same as the STA **OR** one must contain a photograph and one must be issued by a government agency. **Each applicant must do this in person.** - c. Be fingerprinted. <u>NOTE</u>: The actual time to complete this process should be less than 30 minutes, however, due to unanticipated volume this may take more time. This information is submitted to the TSA immediately. The fingerprint results should be received within 24 hours. When the results are received, if the results are not favorable, the employee will be notified to come and see the Airport Security Coordinator (ASC) or an Assistant ASC, so that the individual receives information on their rights. The employee cannot schedule any additional training until after notification in regards to the STA. - 5. Security Threat Assessment (STA) procedure for each individual consists of the following: - a. Complete a General Mitchell International Airport I.D. Badge Application form. - b. Provide two forms of identification as indicated in the *List of Acceptable Documents. (See Page 9) Only one item from List A <u>OR</u> one item from List B <u>AND</u> one item from List C at the time that the application is turned in to the Airport Badging Office. *Each applicant must do this in person.* - c. Sign and date a Privacy Act Notice form. - * This list is subject to change without notice. The most recent Form I-9 List will be used. NOTE: The actual time for the employee to complete these items should be less than 30 minutes, however, due to unanticipated volume this may take more time. The STA information is entered in the airport computer database and is sent to the Transportation Security Clearinghouse (TSC) for processing. The results should be received within 72 hours. When the results are received, if they are favorable, the employer will be notified to have the employee call or go online to schedule testing for the Security Video and/or Non-Movement Area Driver's Training or the Movement Area Driver's Training as appropriate. If the results are not favorable, the TSA will contact the individual and instruct them on how to proceed. The Airport Badging Office may not be permitted to discuss the results with the employer. There is *no fee* for this process. - 6. Security Video and/or Driver's Training Video (if applicable) - a. The Security Video is **mandatory** for **all** badged personnel. - b. The Non-Movement Area Driver's Training Video is required only if duties require driving on the areas of the airport that do not cross taxiways and/or runways. NOTE: Scheduling for these training sessions <u>must</u> be done by calling the Airport Badging office at 414-747-4537 or online (internet address will be provided as it becomes available). The actual time to complete the Security Video should be 60 minutes. The actual time to complete the Non-Movement Area Driver's Training video should be 45 minutes. There is *no fee* for this process. - D. Perimeter Security Zone 1 (Terminal area) - 1. For personnel that do not have unescorted access authority (badged) to enter into the airport perimeter through a security checkpoint, i.e. one-time material delivery drivers, concrete delivery drivers, dump truck driver's, and vehicle drivers that work on daily terms, even when they are under the escort of someone that does have unescorted access, must provide a valid (unexpired) photographic identification, issued by a government authority, (driver's license, passport, military ID, etc.) and obtain a Visitor's badge. This badge must be returned to the point of entry or accounted for by another checkpoint. - 2. All vehicles must be prominently marked with the name of the company, either stenciled/painted on or by a magnetic sign. This marking must be on both sides of the vehicle, preferably on the front cab doors, in letters large enough to read from twenty (20) feet away, approximately three (3) inches high. For company vehicles that are not on the authorized access list a vehicle placard will be issued. This placard must be returned to the point of entry or accounted for by another checkpoint. <u>NOTE</u>: The time needed for the necessary checks of personnel/vehicles to enter this area can be as much as fifteen (15) minutes. There is **no fee** for this process. - E. Perimeter Security Zones 2-9 (All areas Except Zone 1 inside the perimeter fence) - 1. For personnel that do not have unescorted access authority (badged) to enter into the airport perimeter through a vehicle access point, i.e. one-time material delivery drivers, concrete delivery drivers, dump truck drivers, and vehicle drivers that work on daily terms, must be escorted by someone that does have unescorted access authority. - 2. All vehicles must be prominently marked with the name of the company, either stenciled/painted on or by a magnetic sign. This marking must be on both sides of the vehicle, preferably on the front cab doors, in letters large enough to read from twenty (20) feet away, approximately three (3) inches high. <u>NOTE (D & E)</u>: At the Airport's discretion, visual escort by qualified personnel may substitute for physical escort. Qualified personnel shall be Airport Contract Security provider; Airside or Landside Operations; Airport Maintenance; Airport Sheriff's Department; or Airport Public Safety & Security. This provision will be determined at or before the Pre-con meeting. # **Table of Estimated Times for Security Items** | Activity | Estimated time in person | Estimated time to completion | | | |--|--------------------------|---|--|--| | MKE Company Registration Information & Authorization | 30 minutes | 7 days | | | | MKE Authorized Signatory
Designation form | 30 minutes | 3 to 5 days (dependent upon
authorized signers STA and
CHRC results | | | | Authorized Signer Training | 15 minutes | 15 minutes | | | | Criminal History Records Check (CHBC) | 30 minutes | 1 day | | | | Security Threat Assessment (STA) | 30 minutes | 3 days | | | | Security Video | 60 minutes | | | | | Driver's Training Video
(if applicable) | 45 minutes | | | | | Total time to receive a Badge = 3 to 7 business days (estimated) | | | | | # **List of Acceptable Documents** List A OR List B AND List C # Documents that Establish Both Identity and Employment Eligibility - U.S. Passport (unexpired or expired) - Certificate of U.S. Citizenship (USCIS Form N-560 or N-561) - Certificate of Naturalization (USCIS Form N-550 or N-570) - Unexpired foreign passport, with I-551 stamp or attached Form I-94 indicating unexpired employment authorization - Permanent Resident Card or Alien Registration Receipt Card with photograph (USCIS Form I-151 or I-551) - 6. Unexpired Temporary Resident Card (USCIS Form I-688) - 7. Unexpired Employment Authorization Card (USCIS Form I-688A) - 8. Unexpired Reentry Permit (USCIS Form I-327) - Unexpired Refugee Travel
Document (USCIS Form I-571) - Unexpired Employment Authorization Document issued by USCIS that contains a photograph # **Documents that Establish Identity** - Driver's license or ID card issued by a State or outlying possession of the United States provided it contains a photograph or information such as name, date of birth, gender, height, eye color, and address - ID card issued by Federal, State, or local government agency or entity provided it contains a photograph or information such as name, date of birth, gender, height, eye color, and address - 3. School ID card with a photograph - 4. Voter's registration card - 5. U.S. Military card or draft record - 6. Military dependent's ID card - U.S. Coast Guard Merchant Mariner Card - 8. Native American tribal document - 9. Driver's license issued by a Canadian government authority # For persons under the age of 18 who are unable to present a document listed above - 1. School record or report card - 2. Clinic, doctor, or hospital record - 3. Day-care or nursery school record #### Documents that Establish Employment Eligibility - Social Security card issued by the Social Security Administration (other than a card stating it is not valid for employment) - Certification of Birth Abroad Issued by the Department of State (Form FS-545 or Form DS-1350) - Original or certified copy of a birth certificate issued by a State, county, municipal authority, or outlying possession of the United States bearing an official seal - Native American tribal document - 5. U.S. Citizen ID Card (USCIS Form I-197) - 6. ID Card for use of Resident Citizen in the United States (USCIS Form I-179) - 7. Unexpired employment authorization document issued by USCIS (other than those listed under List A) NOTE: The applicant can present one item from Column A, OR, if they do not have an item from Column A, they must present one item from Column B AND one item from Column # Item C-100 Contractor Quality Control Program (CQCP) **100-1 General.** Quality is more than test results. Quality is the combination of proper materials, testing, workmanship, equipment, inspection, and documentation of the project. Establishing and maintaining a culture of quality is key to achieving a quality project. The Contractor shall establish, provide, and maintain an effective Contractor Quality Control Program (CQCP) that details the methods and procedures that will be taken to assure that all materials and completed construction required by this contract conform to contract plans, technical specifications and other requirements, whether manufactured by the Contractor, or procured from subcontractors or vendors. Although guidelines are established and certain minimum requirements are specified here and elsewhere in the contract technical specifications, the Contractor shall assume full responsibility for accomplishing the stated purpose. The Contractor shall establish a CQCP that will: - **a.** Provide qualified personnel to develop and implement the CQCP. - **b.** Provide for the production of acceptable quality materials. - **c.** Provide sufficient information to assure that the specification requirements can be met. - **d.** Document the CQCP process. The Contractor shall not begin any construction or production of materials to be incorporated into the completed work until the CQCP has been reviewed and approved by the Resident Project Representative (RPR). No partial payment will be made for materials subject to specific quality control (QC) requirements until the CQCP has been reviewed and approved. The QC requirements contained in this section and elsewhere in the contract technical specifications are in addition to and separate from the quality assurance (QA) testing requirements. QA testing requirements are the responsibility of the RPR or Contractor as specified in the specifications. A Quality Control (QC)/Quality Assurance (QA) workshop with the Engineer, Resident Project Representative (RPR), Contractor, subcontractors, testing laboratories, and Owner's representative must be held prior to start of construction. The QC/QA workshop will be facilitated by the Contractor. The Contractor shall coordinate with the Airport and the RPR on time and location of the QC/QA workshop. Items to be addressed, at a minimum, will include: - **a.** Review of the CQCP including submittals, QC Testing, Action & Suspension Limits for Production, Corrective Action Plans, Distribution of QC reports, and Control Charts. - **b.** Discussion of the QA program. - **c.** Discussion of the QC and QA Organization and authority including coordination and information exchange between QC and QA. - **d.** Establish regular meetings to discuss control of materials, methods and testing. - e. Establishment of the overall QC culture. # 100-2 Description of program. **a. General description.** The Contractor shall establish a CQCP to perform QC inspection and testing of all items of work required by the technical specifications, including those performed by subcontractors. The CQCP shall ensure conformance to applicable specifications and plans with respect to materials, off- site fabrication, workmanship, construction, finish, and functional performance. The CQCP shall be effective for control of all construction work performed under this Contract and shall specifically include surveillance and tests required by the technical specifications, in addition to other requirements of this section and any other activities deemed necessary by the Contractor to establish an effective level of QC. **b.** Contractor Quality Control Program (CQCP). The Contractor shall describe the CQCP in a written document that shall be reviewed and approved by the RPR prior to the start of any production, construction, or off-site fabrication. The written CQCP shall be submitted to the RPR for review and approval at least 10 calendar days before the CQCP Workshop. The Contractor's CQCP and QC testing laboratory must be approved in writing by the RPR prior to the Notice to Proceed (NTP). The CQCP shall be organized to address, as a minimum, the following: - 1. QC organization and resumes of key staff - 2. Project progress schedule - 3. Submittals schedule - 4. Inspection requirements - 5. QC testing plan - 6. Documentation of QC activities and distribution of QC reports - 7. Requirements for corrective action when QC and/or QA acceptance criteria are not met - 8. Material quality and construction means and methods. Address all elements applicable to the project that affect the quality of the pavement structure including subgrade, subbase, base, and surface course. Some elements that must be addressed include, but is not limited to mix design, aggregate grading, stockpile management, mixing and transporting, placing and finishing, quality control testing and inspection, smoothness, laydown plan, equipment, and temperature management plan. The Contractor must add any additional elements to the CQCP that is necessary to adequately control all production and/or construction processes required by this contract. **100-3 CQCP organization.** The CQCP shall be implemented by the establishment of a QC organization. An organizational chart shall be developed to show all QC personnel, their authority, and how these personnel integrate with other management/production and construction functions and personnel. The organizational chart shall identify all QC staff by name and function, and shall indicate the total staff required to implement all elements of the CQCP, including inspection and testing for each item of work. If necessary, different technicians can be used for specific inspection and testing functions for different items of work. If an outside organization or independent testing laboratory is used for implementation of all or part of the CQCP, the personnel assigned shall be subject to the qualification requirements of paragraphs 100-03a and 100-03b. The organizational chart shall indicate which personnel are Contractor employees and which are provided by an outside organization. The QC organization shall, as a minimum, consist of the following personnel: **a. Program Administrator.** The Contractor Quality Control Program Administrator (CQCPA) must be a full-time employee of the Contractor, or a consultant engaged by the Contractor. The CQCPA must have a minimum of five (5) years of experience in QC pavement construction with prior QC experience on a project of comparable size and scope as the contract. Included in the five (5) years of paving/QC experience, the CQCPA must meet at least one of the following requirements: - (1) Professional Engineer with one (1) year of airport paving experience. - (2) Engineer-in-training with two (2) years of airport paving experience. - (3) National Institute for Certification in Engineering Technologies (NICET) Civil Engineering Technology Level IV with three (3) years of airport paving experience. - (4) An individual with four (4) years of airport paving experience, with a Bachelor of Science Degree in Civil Engineering, Civil Engineering Technology or Construction. The CQCPA must have full authority to institute any and all actions necessary for the successful implementation of the CQCP to ensure compliance with the contract plans and technical specifications. The CQCPA authority must include the ability to immediately stop production until materials and/or processes are in compliance with contract specifications. The CQCPA must report directly to a principal officer of the construction firm. The CQCPA may supervise the Quality Control Program on more than one project provided that person can be at the job site within two (2) hours after being notified of a problem. **b. QC technicians.** A sufficient number of QC technicians necessary to adequately implement the CQCP must be provided. These personnel must be either Engineers, engineering technicians, or experienced craftsman with qualifications in the appropriate field equivalent
to NICET Level II in Civil Engineering Technology or higher, and shall have a minimum of two (2) years of experience in their area of expertise. The QC technicians must report directly to the CQCPA and shall perform the following functions: - (1) Inspection of all materials, construction, plant, and equipment for conformance to the technical specifications, and as required by paragraph 100-6. - (2) Performance of all QC tests as required by the technical specifications and paragraph 100-8. - (3) Performance of tests for the RPR when required by the technical specifications. Certification at an equivalent level of qualification and experience by a state or nationally recognized organization will be acceptable in lieu of NICET certification. - **c. Staffing levels.** The Contractor shall provide sufficient qualified QC personnel to monitor each work activity at all times. Where material is being produced in a plant for incorporation into the work, separate plant and field technicians shall be provided at each plant and field placement location. The scheduling and coordinating of all inspection and testing must match the type and pace of work activity. The CQCP shall state where different technicians will be required for different work elements. - **100-4 Project progress schedule.** Critical QC activities must be shown on the project schedule as required by Section 80, paragraph 80-03, *Execution and Progress*. - **100-5 Submittals schedule.** The Contractor shall submit a detailed listing of all submittals (for example, mix designs, material certifications) and shop drawings required by the technical specifications. The listing can be developed in a spreadsheet format and shall include as a minimum: - a. Specification item number - **b.** Item description - **c.** Description of submittal - **d.** Specification paragraph requiring submittal - e. Scheduled date of submittal **100-6 Inspection requirements.** QC inspection functions shall be organized to provide inspections for all definable features of work, as detailed below. All inspections shall be documented by the Contractor as specified by paragraph 100-9. Inspections shall be performed as needed to ensure continuing compliance with contract requirements until completion of the particular feature of work. Inspections shall include the following minimum requirements: - **a.** During plant operation for material production, QC test results and periodic inspections shall be used to ensure the quality of aggregates and other mix components, and to adjust and control mix proportioning to meet the approved mix design and other requirements of the technical specifications. All equipment used in proportioning and mixing shall be inspected to ensure its proper operating condition. The CQCP shall detail how these and other QC functions will be accomplished and used. - **b.** During field operations, QC test results and periodic inspections shall be used to ensure the quality of all materials and workmanship. All equipment used in placing, finishing, and compacting shall be inspected to ensure its proper operating condition and to ensure that all such operations are in conformance to the technical specifications and are within the plan dimensions, lines, grades, and tolerances specified. The CQCP shall document how these and other QC functions will be accomplished and used. # 100-7 Contractor QC testing facility. - **a.** For projects that include Item P-401, Item P-403, and Item P-404, the Contractor shall ensure facilities, including all necessary equipment, materials, and current reference standards, are provided that meet requirements in the following paragraphs of ASTM D3666, *Standard Specification for Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials*: - 8.1.3 Equipment Calibration and Checks; - 8.1.9 Equipment Calibration, Standardization, and Check Records; - 8.1.12 Test Methods and Procedures - **b.** For projects that include P-501, the Contractor shall ensure facilities, including all necessary equipment, materials, and current reference standards, are provided that meet requirements in the following paragraphs of ASTM C1077, Standard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation: - 7 Test Methods and Procedures - 8 Facilities, Equipment, and Supplemental Procedures **100-8 QC testing plan.** As a part of the overall CQCP, the Contractor shall implement a QC testing plan, as required by the technical specifications. The testing plan shall include the minimum tests and test frequencies required by each technical specification Item, as well as any additional QC tests that the Contractor deems necessary to adequately control production and/or construction processes. The QC testing plan can be developed in a spreadsheet fashion and shall, as a minimum, include the following: - a. Specification item number (e.g., P-401) - **b.** Item description (e.g., Hot Mix Asphalt Pavements) - **c.** Test type (e.g., gradation, grade, asphalt content) - **d.** Test standard (e.g., ASTM or American Association of State Highway and Transportation Officials (AASHTO) test number, as applicable) - **e.** Test frequency (e.g., as required by technical specifications or minimum frequency when requirements are not stated) - **f.** Responsibility (e.g., plant technician) - g. Control requirements (e.g., target, permissible deviations) The QC testing plan shall contain a statistically-based procedure of random sampling for acquiring test samples in accordance with ASTM D3665. The RPR shall be provided the opportunity to witness QC sampling and testing. All QC test results shall be documented by the Contractor as required by paragraph 100-9. **100-9 Documentation.** The Contractor shall maintain current QC records of all inspections and tests performed. These records shall include factual evidence that the required QC inspections or tests have been performed, including type and number of inspections or tests involved; results of inspections or tests; nature of defects, deviations, causes for rejection, etc.; proposed remedial action; and corrective actions taken. These records must cover both conforming and defective or deficient features, and must include a statement that all supplies and materials incorporated in the work are in full compliance with the terms of the contract. Legible copies of these records shall be furnished to the RPR daily. The records shall cover all work placed subsequent to the previously furnished records and shall be verified and signed by the CQCPA. Contractor QC records required for the contract shall include, but are not necessarily limited to, the following records: - **a. Daily inspection reports.** Each Contractor QC technician shall maintain a daily log of all inspections performed for both Contractor and subcontractor operations. These technician's daily reports shall provide factual evidence that continuous QC inspections have been performed and shall, as a minimum, include the following: - (1) Technical specification item number and description - (2) Compliance with approved submittals - (3) Proper storage of materials and equipment - (4) Proper operation of all equipment - (5) Adherence to plans and technical specifications - (6) Summary of any necessary corrective actions - (7) Safety inspection. - (8) Photographs and/or video The daily inspection reports shall identify all QC inspections and QC tests conducted, results of inspections, location and nature of defects found, causes for rejection, and remedial or corrective actions taken or proposed. The daily inspection reports shall be signed by the responsible QC technician and the CQCPA. The RPR shall be provided at least one copy of each daily inspection report on the work day following the day of record. When QC inspection and test results are recorded and transmitted electronically, the results must be archived. - **b. Daily test reports.** The Contractor shall be responsible for establishing a system that will record all QC test results. Daily test reports shall document the following information: - (1) Technical specification item number and description - (2) Test designation - (3) Location - (4) Date of test - (5) Control requirements - (6) Test results - (7) Causes for rejection - (8) Recommended remedial actions - (9) Retests Test results from each day's work period shall be submitted to the RPR prior to the start of the next day's work period. When required by the technical specifications, the Contractor shall maintain statistical QC charts. When QC daily test results are recorded and transmitted electronically, the results must be archived. **100-10 Corrective action requirements.** The CQCP shall indicate the appropriate action to be taken when a process is deemed, or believed, to be out of control (out of tolerance) and detail what action will be taken to bring the process into control. The requirements for corrective action shall include both general requirements for operation of the CQCP as a whole, and for individual items of work contained in the technical specifications. The CQCP shall detail how the results of QC inspections and tests will be used for determining the need for corrective action and shall contain clear rules to gauge when a process is out of control and the type of correction to be taken to regain process control. When applicable or required by the technical specifications, the Contractor shall establish and use statistical QC charts for individual QC tests. The requirements for corrective action shall be linked to the control charts. **100-11 Inspection and/or observations by the RPR.** All items of material and equipment are subject to inspection and/or observation by the RPR at the point of production, manufacture or shipment to determine if the Contractor, producer, manufacturer or shipper maintains an adequate QC system in conformance with
the requirements detailed here and the applicable technical specifications and plans. In addition, all items of materials, equipment and work in place shall be subject to inspection and/or observation by the RPR at the site for the same purpose. Inspection and/or observations by the RPR does not relieve the Contractor of performing QC inspections of either on-site or off-site Contractor's or subcontractor's work. # 100-12 Noncompliance. - **a.** The Resident Project Representative (RPR) will provide written notice to the Contractor of any noncompliance with their CQCP. After receipt of such notice, the Contractor must take corrective action. - **b.** When QC activities do not comply with either the CQCP or the contract provisions or when the Contractor fails to properly operate and maintain an effective CQCP, and no effective corrective actions have been taken after notification of non-compliance, the RPR will recommend the Owner take the following actions: - (1) Order the Contractor to replace ineffective or unqualified QC personnel or subcontractors and/or - (2) Order the Contractor to stop operations until appropriate corrective actions are taken. # METHOD OF MEASUREMENT **100-13 Basis of measurement and payment.** No separate payment for CQCP Program. # **REFERENCES** The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. National Institute for Certification in Engineering Technologies (NICET) ASTM International (ASTM) ASTM C1077 Standard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation ASTM D3665 Standard Practice for Random Sampling of Construction Materials ASTM D3666 Standard Specification for Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials **END OF ITEM C-100** # Item P-152 Excavation, Subgrade, and Embankment #### DESCRIPTION - **152-1.1** This item covers excavation, disposal, placement, and compaction of all materials within the limits of the work required to construct safety areas, runways, taxiways, aprons, and intermediate areas as well as other areas for drainage, building construction, parking, or other purposes in accordance with these specifications and in conformity to the dimensions and typical sections shown on the plans. - **152-1.2 Classification.** All material excavated shall be classified as defined below: - **a.** Unclassified excavation. Unclassified excavation shall consist of the excavation and disposal of all material, regardless of its nature. - **152-1.3 Unsuitable excavation.** Unsuitable material shall be disposed in designated waste areas as shown on the plans. Materials containing vegetable or organic matter, such as muck, peat, organic silt, or sod shall be considered unsuitable for use in embankment construction. Material suitable for topsoil may be used on the embankment slope when approved by the RPR. - **152-1.4 Dewatering.** Dewatering shall consist of the dewatering required to lower and control ground water table levels and hydrostatic pressures to permit excavation, backfill, and construction to be performed in dry conditions. # **CONSTRUCTION METHODS** **152-2.1 General.** Before beginning excavation, grading, and embankment operations in any area, the area shall be cleared or cleared and grubbed in accordance with Item P-151. The suitability of material to be placed in embankments shall be subject to approval by the RPR. All unsuitable material shall be disposed of in waste areas as shown on the plans. All waste areas shall be graded to allow positive drainage of the area and adjacent areas. The surface elevation of waste areas shall be specified on the plans or approved by the RPR. When the Contractor's excavating operations encounter artifacts of historical or archaeological significance, the operations shall be temporarily discontinued and the RPR notified per Section 70, paragraph 70-20. At the direction of the RPR, the Contractor shall excavate the site in such a manner as to preserve the artifacts encountered and allow for their removal. Such excavation will be paid for as extra work. Areas outside the limits of the pavement areas where the top layer of soil has become compacted by hauling or other Contractor activities shall be scarified and disked to a depth of 4 inches (100 mm), to loosen and pulverize the soil. Stones or rock fragments larger than 4 inches (100 mm) in their greatest dimension will not be permitted in the top 6 inches (150 mm) of the subgrade. If it is necessary to interrupt existing surface drainage, sewers or under-drainage, conduits, utilities, or similar underground structures, the Contractor shall be responsible for and shall take all necessary precautions to preserve them or provide temporary services. When such facilities are encountered, the Contractor shall notify the RPR, who shall arrange for their removal if necessary. The Contractor, at their own expense, shall satisfactorily repair or pay the cost of all damage to such facilities or structures that may result from any of the Contractor's operations during the period of the contract. - **a. Blasting.** Blasting shall not be allowed. - **152-2.2 Excavation.** No excavation shall be started until the work has been staked out by the Contractor and the RPR has obtained from the Contractor, the survey notes of the elevations and measurements of the ground surface. The Contractor and RPR shall agree that the original ground lines shown on the original topographic mapping are accurate, or agree to any adjustments made to the original ground lines. All areas to be excavated shall be stripped of vegetation and topsoil. Topsoil shall be stockpiled for future use in areas designated on the plans or by the RPR. All suitable excavated material shall be used in the formation of embankment, subgrade, or other purposes **as** shown on the plans. All unsuitable material shall be disposed of as shown on the plans. The grade shall be maintained so that the surface is well drained at all times. When the volume of the excavation exceeds that required to construct the embankments to the grades as indicated on the plans, the excess shall be used to grade the areas of ultimate development or disposed as directed by the RPR. When the volume of excavation is not sufficient for constructing the embankments to the grades indicated, the deficiency shall be obtained from borrow areas. - **a. Selective grading.** When selective grading is indicated on the plans, the more suitable material designated by the RPR shall be used in constructing the embankment or in capping the pavement subgrade. If, at the time of excavation, it is not possible to place this material in its final location, it shall be stockpiled in approved areas until it can be placed. The more suitable material shall then be placed and compacted as specified. Selective grading shall be considered incidental to the work involved. The cost of stockpiling and placing the material shall be included in the various pay items of work involved. - **b. Undercutting.** Rock, shale, hardpan, loose rock, boulders, or other material unsatisfactory for safety areas, subgrades, roads, shoulders, or any areas intended for turf shall be excavated to a minimum depth of 12 inches (300 mm) below the subgrade or to the depth specified by the RPR. Muck, peat, matted roots, or other yielding material, unsatisfactory for subgrade foundation, shall be removed to the depth specified. Unsuitable materials shall be disposed of at locations shown on the plans. The cost is incidental to this item. This excavated material shall be paid for at the contract unit price per cubic yard (per cubic meter) for unclassified excavation. The excavated area shall be backfilled with suitable material obtained from the grading operations or borrow areas and compacted to specified densities. The necessary backfill will constitute a part of the embankment. Where rock cuts are made, backfill with select material. Any pockets created in the rock surface shall be drained in accordance with the details shown on the plans. Undercutting will be paid as unclassified excavation. - **c. Over-break.** Over-break, including slides, is that portion of any material displaced or loosened beyond the finished work as planned or authorized by the RPR. All over-break shall be graded or removed by the Contractor and disposed of as directed by the RPR. The RPR shall determine if the displacement of such material was unavoidable and their own decision shall be final. Payment will not be made for the removal and disposal of over-break that the RPR determines as avoidable. Unavoidable over-break will be classified as "Unclassified Excavation." - **d. Removal of utilities.** The removal of existing structures and utilities required to permit the orderly progress of work will be accomplished by the Contractor as indicated on the plans. All existing foundations shall be excavated at least 2 feet (60 cm) below the top of subgrade or as indicated on the plans, and the material disposed of as directed by the RPR. All foundations thus excavated shall be backfilled with suitable material and compacted as specified for embankment or as shown on the plans. - **152-2.3 Borrow excavation.** There are no borrow sources within the boundaries of the airport property. The Contractor shall locate and obtain borrow sources, subject to the approval of the RPR. The Contractor shall notify the RPR at least 15 days prior to beginning the excavation so necessary measurements and tests can be made by the RPR. All borrow pits shall be opened to expose the various strata of acceptable material to allow obtaining a uniform product. Borrow areas shall be drained and left in a neat, presentable condition with all slopes dressed uniformly. Borrow areas shall not create a hazardous wildlife attractant. -
152-2.4 Drainage excavation. Drainage excavation shall consist of excavating drainage ditches including intercepting, inlet, or outlet ditches; or other types as shown on the plans. The work shall be performed in sequence with the other construction. Ditches shall be constructed prior to starting adjacent excavation operations. All satisfactory material shall be placed in embankment fills; unsuitable material shall be placed in designated waste areas or as directed by the RPR. All necessary work shall be performed true to final line, elevation, and cross-section. The Contractor shall maintain ditches constructed on the project to the required cross-section and shall keep them free of debris or obstructions until the project is accepted. - **152-2.5 Preparation of cut areas or areas where existing pavement has been removed.** In those areas on which a subbase or base course is to be placed, the top 12 inches (300 mm) of subgrade shall be compacted to not less than 100% of maximum density for non-cohesive soils, and 95% of maximum density for cohesive soils as determined by ASTM D1557. As used in this specification, "non-cohesive" shall mean those soils having a plasticity index (PI) of less than 3 as determined by ASTM D4318. - **152-2.6 Preparation of embankment area.** All sod and vegetative matter shall be removed from the surface upon which the embankment is to be placed. The cleared surface shall be broken up by plowing or scarifying to a minimum depth of 6 inches (150 mm) and shall then be compacted per paragraph 152-2.10. Sloped surfaces steeper than one (1) vertical to four (4) horizontal shall be plowed, stepped, benched, or broken up so that the fill material will bond with the existing material. When the subgrade is part fill and part excavation or natural ground, the excavated or natural ground portion shall be scarified to a depth of 12 inches (300 mm) and compacted as specified for the adjacent fill. No direct payment shall be made for the work performed under this section. The necessary clearing and grubbing and the quantity of excavation removed will be paid for under the respective items of work. **152-2.7 Control Strip.** The first half-day of construction of subgrade and/or embankment shall be considered as a control strip for the Contractor to demonstrate, in the presence of the RPR, that the materials, equipment, and construction processes meet the requirements of this specification. The sequence and manner of rolling necessary to obtain specified density requirements shall be determined. The maximum compacted thickness may be increased to a maximum of 12 inches (300 mm) upon the Contractor's demonstration that approved equipment and operations will uniformly compact the lift to the specified density. The RPR must witness this demonstration and approve the lift thickness prior to full production. Control strips that do not meet specification requirements shall be reworked, re-compacted, or removed and replaced at the Contractor's expense. Full operations shall not begin until the control strip has been accepted by the RPR. The Contractor shall use the same equipment, materials, and construction methods for the remainder of construction, unless adjustments made by the Contractor are approved in advance by the RPR. **152-2.8 Formation of embankments.** The material shall be constructed in lifts as established in the control strip, but not less than 6 inches (150 mm) nor more than 12 inches (300 mm) of compacted thickness. When more than one lift is required to establish the layer thickness shown on the plans, the construction procedure described here shall apply to each lift. No lift shall be covered by subsequent lifts until tests verify that compaction requirements have been met. The Contractor shall rework, re-compact and retest any material placed which does not meet the specifications. The lifts shall be placed, to produce a soil structure as shown on the typical cross-section or as directed by the RPR. Materials such as brush, hedge, roots, stumps, grass and other organic matter, shall not be incorporated or buried in the embankment. Earthwork operations shall be suspended at any time when satisfactory results cannot be obtained due to rain, freezing, or other unsatisfactory weather conditions in the field. Frozen material shall not be placed in the embankment nor shall embankment be placed upon frozen material. Material shall not be placed on surfaces that are muddy, frozen, or contain frost. The Contractor shall drag, blade, or slope the embankment to provide surface drainage at all times. The material in each lift shall be within $\pm 2\%$ of optimum moisture content before rolling to obtain the prescribed compaction. The material shall be moistened or aerated as necessary to achieve a uniform moisture content throughout the lift. Natural drying may be accelerated by blending in dry material or manipulation alone to increase the rate of evaporation. The Contractor shall make the necessary corrections and adjustments in methods, materials or moisture content to achieve the specified embankment density. The RPR will take samples of excavated materials which will be used in embankment for testing and develop a Moisture-Density Relations of Soils Report (Proctor) in accordance with D 1557. A new Proctor shall be developed for each soil type based on visual classification. Density tests will be taken by the RPR for every 3,000 square yards of compacted embankment for each lift which is required to be compacted, or other appropriate frequencies as determined by the RPR. If the material has greater than 30% retained on the 3/4-inch (19.0 mm) sieve, follow AASHTO T-180 Annex Correction of maximum dry density and optimum moisture for oversized particles. Rolling operations shall be continued until the embankment is compacted to not less than 100% of maximum density for non-cohesive soils, and 95% of maximum density for cohesive soils as determined by ASTM D1557. Under all areas to be paved, the embankments shall be compacted to a depth of 8 inches and to a density of not less than 95% percent of the maximum density as determined by ASTM D1557. As used in this specification, "non-cohesive" shall mean those soils having a plasticity index (PI) of less than 3 as determined by ASTM D4318. On all areas outside of the pavement areas, no compaction will be required on the top 4 inches which shall be prepared for a seedbed in accordance with Item T-901. The in-place field density shall be determined in accordance with ASTM 6938 using Procedure A, the direct transmission method, and ASTM D6938 shall be used to determine the moisture content of the material. The machine shall be calibrated in accordance with ASTM D6938. The RPR shall perform all density. If the specified density is not attained, the area represented by the test or as designated by the RPR shall be reworked and/or re-compacted and additional random tests made. This procedure shall be followed until the specified density is reached. Compaction areas shall be kept separate, and no lift shall be covered by another lift until the proper density is obtained. During construction of the embankment, the Contractor shall route all construction equipment evenly over the entire width of the embankment as each lift is placed. Lift placement shall begin in the deepest portion of the embankment fill. As placement progresses, the lifts shall be constructed approximately parallel to the finished pavement grade line. When rock, concrete pavement, asphalt pavement, and other embankment material are excavated at approximately the same time as the subgrade, the material shall be incorporated into the outer portion of the embankment and the subgrade material shall be incorporated under the future paved areas. Stones, fragmentary rock, and recycled pavement larger than 4 inches (100 mm) in their greatest dimensions will not be allowed in the top 12 inches (300 mm) of the subgrade. Rockfill shall be brought up in lifts as specified or as directed by the RPR and the finer material shall be used to fill the voids forming a dense, compact mass. Rock, cement concrete pavement, asphalt pavement, and other embankment material shall not be disposed of except at places and in the manner designated on the plans or by the RPR. When the excavated material consists predominantly of rock fragments of such size that the material cannot be placed in lifts of the prescribed thickness without crushing, pulverizing or further breaking down the pieces, such material may be placed in the embankment as directed in lifts not exceeding 2 feet (60 cm) in thickness. Each lift shall be leveled and smoothed with suitable equipment by distribution of spalls and finer fragments of rock. The lift shall not be constructed above an elevation 4 feet (1.2 m) below the finished subgrade. There will be no separate measurement of payment for compacted embankment. All costs incidental to placing in lifts, compacting, discing, watering, mixing, sloping, and other operations necessary for construction of embankments will be included in the contract price for excavation, borrow, or other items. **152-2.9 Proof rolling.** The purpose of proof rolling the subgrade is to identify any weak areas in the subgrade and not for compaction of the subgrade. Before start of embankment, and after compaction is completed, the subgrade area shall be proof rolled with a Tandem axle Dual Wheel Dump Truck loaded to the legal limit with tires inflated to 100 psi in the presence of the RPR. Apply a minimum of 75% coverage, or as specified by the RPR, under pavement areas. A coverage is defined as the application of one tire print over the designated area. Soft areas of subgrade that deflect more than 1 inch (25 mm) or show permanent deformation greater than 1 inch (25 mm) shall be removed and replaced with suitable material or reworked to conform to the moisture content and compaction requirements in accordance
with these specifications. Removal and replacement of soft areas is incidental to this item. **152-2.10 Compaction requirements.** The subgrade under areas to be paved shall be compacted to a depth of 12 inches (300 mm) and to a density of not less than 100 percent of the maximum dry density as determined by ASTM D698. The subgrade in areas outside the limits of the pavement areas shall be compacted to a depth of 12 inches (300 mm) and to a density of not less than 95 percent of the maximum density as determined by ASTM D698. The material to be compacted shall be within $\pm 2\%$ of optimum moisture content before being rolled to obtain the prescribed compaction (except for expansive soils). When the material has greater than 30 percent retained on the $\frac{3}{4}$ inch (19.0 mm) sieve, follow the methods in ASTM D698. Tests for moisture content and compaction will be taken at a minimum of 1,500 S.Y. of subgrade. All quality assurance testing shall be done by the RPR. The in-place field density shall be determined in accordance with ASTM D6938 using Procedure A, the direct transmission method, and ASTM D6938 shall be used to determine the moisture content of the material. The machine shall be calibrated in accordance with ASTM D6938 within 12 months prior to its use on this contract. The gage shall be field standardized daily. Maximum density refers to maximum dry density at optimum moisture content unless otherwise specified. If the specified density is not attained, the entire lot shall be reworked and/or re-compacted and additional random tests made. This procedure shall be followed until the specified density is reached. All cut-and-fill slopes shall be uniformly dressed to the slope, cross-section, and alignment shown on the plans or as directed by the RPR and the finished subgrade shall be maintained. **152-2.11 Finishing and protection of subgrade.** Finishing and protection of the subgrade is incidental to this item. Grading and compacting of the subgrade shall be performed so that it will drain readily. All low areas, holes or depressions in the subgrade shall be brought to grade. Scarifying, blading, rolling and other methods shall be performed to provide a thoroughly compacted subgrade shaped to the lines and grades shown on the plans. All ruts or rough places that develop in the completed subgrade shall be graded, recompacted, and retested. The Contractor shall protect the subgrade from damage and limit hauling over the finished subgrade to only traffic essential for construction purposes. The Contractor shall maintain the completed course in satisfactory condition throughout placement of subsequent layers. No subbase, base, or surface course shall be placed on the subgrade until the subgrade has been accepted by the RPR. **152-2.12 Haul.** All hauling will be considered a necessary and incidental part of the work. The Contractor shall include the cost in the contract unit price for the pay of items of work involved. No payment will be made separately or directly for hauling on any part of the work. The Contractor's equipment shall not cause damage to any excavated surface, compacted lift or to the subgrade as a result of hauling operations. Any damage caused as a result of the Contractor's hauling operations shall be repaired at the Contractor's expense. The Contractor shall be responsible for providing, maintaining and removing any haul roads or routes within or outside of the work area, and shall return the affected areas to their former condition, unless otherwise authorized in writing by the Owner. No separate payment will be made for any work or materials associated with providing, maintaining and removing haul roads or routes. **152-2.13 Surface Tolerances.** In those areas on which a subbase or base course is to be placed, the surface shall be tested for smoothness and accuracy of grade and crown. Any portion lacking the required smoothness or failing in accuracy of grade or crown shall be scarified to a depth of at least 3 inches (75 mm), reshaped and re-compacted to grade until the required smoothness and accuracy are obtained and approved by the RPR. The Contractor shall perform all final smoothness and grade checks in the presence of the RPR. Any deviation in surface tolerances shall be corrected by the Contractor at the Contractor's expense. - **a. Smoothness.** The finished surface shall not vary more than +/- ½ inch (12 mm) when tested with a 12-foot (3.7-m) straightedge applied parallel with and at right angles to the centerline. The straightedge shall be moved continuously forward at half the length of the 12-foot (3.7-m) straightedge for the full length of each line on a 50-foot (15-m) grid. - **b. Grade.** The grade and crown shall be measured on a 50-foot (15-m) grid and shall be within +/- 0.05 feet (15 mm) of the specified grade. On safety areas, turfed areas and other designated areas within the grading limits where no subbase or base is to placed, grade shall not vary more than 0.10 feet (30 mm) from specified grade. Any deviation in excess of this amount shall be corrected by loosening, adding or removing materials, and reshaping. **152-2.14 Topsoil.** When topsoil is specified or required as shown on the plans or under Item T-905, it shall be salvaged from stripping or other grading operations. The topsoil shall meet the requirements of Item T-905. If, at the time of excavation or stripping, the topsoil cannot be placed in its final section of finished construction, the material shall be stockpiled at approved locations. Stockpiles shall be located as shown on the plans and the approved CSPP, and shall not be placed on areas that subsequently will require any excavation or embankment fill. If, in the judgment of the RPR, it is practical to place the salvaged topsoil at the time of excavation or stripping, the material shall be placed in its final position without stockpiling or further re-handling. Upon completion of grading operations, stockpiled topsoil shall be handled and placed as shown on the plans and as required in Item T-905. Topsoil shall be paid for as provided in Item T-905. No direct payment will be made for topsoil under Item P-152. **152-2.15 Dewatering.** It is the contractors responsibility to study the soil borings included in the project manual in conjunction with proposed, existing, and anticipated over-excavation grades to determine the extent or necessity of dewatering the site during the different phases of construction. Dewatering, when required, may include the use of well points, sump pumps, temporary pipelines for water disposal, rock or gravel placement, and other means as approved by the engineer. The Contractor shall submit a dewatering plan to be reviewed by the Owner prior to the beginning of construction activities requiring dewatering. A standby system shall be included in any dewatering plan. Review by the Owner of the Contractor's design shall not be construed as a detailed analysis of the adequacy of the dewatering system, nor shall any provisions of the above requirements be construed as relieving the Contractor of its overall responsibility and liability for the work. It shall be the sole responsibility of the Contractor to control the rate and effect of the dewatering in such a manner as to avoid all objectionable settlement. All dewatering operations shall be adequate to assure the integrity of the finished product and shall be the responsibility of the contractor. Where existing or newly constructed structures or facilities exist immediately adjacent to areas of proposed dewatering, reference points shall be established and observed at frequent intervals to detect any settlement which may develop. The responsibility for conducting the dewatering operation in a manner which will protect adjacent structures and facilities rests solely with the Contractor. The costs of repairing any damage to adjacent structures and restoration of facilities shall be the responsibility of the Contractor. The Contractor shall dispose of water from the work in a suitable manner without damage to the environment or adjacent property. The Contractor shall be responsible for obtaining any permits that may be necessary to dispose of water. No water shall be drained into work built or under construction without prior consent of the owner. Water shall be filtered using an approved method to remove sand and fine sized soil particles before disposal into any drainage system. The release of groundwater to its static level shall be performed in such a manner as to maintain the undisturbed state of the natural foundation soils, prevent disturbance of compacted backfill and prevent flotation or movement of structures, pipelines, and sewers. # METHOD OF MEASUREMENT - **152-3.1** Measurement for payment specified by the cubic yard (cubic meter) shall be computed by the average end areas of design cross sections for computation of neat line design quantities. Measurements will be made at the end of every working day during excavation operations for cross section areas as coordinated with the RPR. The end area is that bound by the original ground line established by field cross-sections and the final theoretical pay line established by cross-sections shown on the plans, subject to verification by the RPR. - **152-3.1** The quantity of unclassified excavation to be paid for shall be the number of cubic yards (cubic meters) measured in its original position. Measurement shall not include the quantity of materials excavated without authorization beyond normal slope lines, or the quantity of material used for purposes other than those directed. - **152-3.2** The quantity of embankment in place shall be the number of cubic yards (cubic meters) measured in its final position. - **152-3.3** Proofroll shall be paid for on a per each basis measured by the number of mobilizations of a proofroll truck that are requested by the RPR or engineer. - **152-3.4** Dewatering shall be
paid for on a lump sum basis for any dewatering necessary for the duration of the project. Dewatering shall be paid on the same payment schedule as mobilization, that is as follows: 25% with first pay request, 25% additional when 25% or more of the original contract is earned, 40% additional when over 50% of the original contract is earned, and the final 10% after final inspection, clean-up and delivery of all project closeout materials. **152-3.5** Containment berm- fill site preparation shall be paid for on a lump sum basis for the full cost of preparing the fill site as shown on the plans. #### **BASIS OF PAYMENT** - **152-4.1** Unclassified excavation payment shall be made at the contract unit price per cubic yard. This price shall be full compensation for furnishing all materials, labor, equipment, tools, and incidentals necessary to complete the item to include grading of fill site area for waste soil from the project site. - **152-4.2** For embankment in place, payment shall be made at the contract unit price per cubic yard. This price shall be full compensation for furnishing all materials, labor, equipment, tools, and incidentals necessary to complete the item. - **152-4.3** For proofroll, payment shall be made at the contract unit price per each. This price shall be full compensation for furnishing all materials, labor, equipment, tools, and incidentals necessary to complete the item. The proofroll truck shall make as many necessary passes of the area as are requested by the engineer or RPR, but only one payment shall be made for one mobilization and as many passes as are necessary to be made by the truck. If there are any areas that need to be addressed from a proofroll, any additional proofrolls in order for the area to be passed will not be paid. - **152-3.4** For Dewatering, payment shall be made at the contract unit price per lump sum. This price shall be full compensation for furnishing all materials, labor, equipment, tools, permits, and incidentals necessary to complete the item. - **152-3.5** For containment berm-fill site preparation, payment shall be made at the contract unit price per lump sum. This price shall be full compensation for building the containment berm with the soils on site as depicted on the plans and any other preparation of the fill site, excluding erosion control items, necessary to waste soil from the project on site. All fill and grading of soils other than those used to create the containment berm shall be considered incidental to the earthwork items they are associated with. All erosion control items shall be paid out with the associated bid items on a linear foot or per each basis. This price shall be full compensation for furnishing all materials, labor, equipment, tools, permits, and incidentals necessary to complete the item. # Payment will be made under: | Item P-152-4.1 | Unclassified Excavation - per cubic yard | |----------------|---| | Item P-152-4.2 | Embankment in place - per cubic yard | | Item P-152-4.3 | Proofroll – per each | | Item P-152-4.4 | Dewatering – per lump sum | | Item P-152-4.5 | Containment Berm – Fill Site Preparation – per lump sum | # **REFERENCES** The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. American Association of State Highway and Transportation Officials (AASHTO) AASHTO T-180 Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop ASTM International (ASTM) ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)) ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN-m/m³)) ASTM D6938 Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth) Advisory Circulars (AC) AC 150/5370-2 Operational Safety on Airports During Construction Software Software FAARFIELD - FAA Rigid and Flexible Iterative Elastic Layered Design U.S. Department of Transportation FAA RD-76-66 Design and Construction of Airport Pavements on Expansive Soils # **END OF ITEM P-152** #### Item P-154 Subbase Course #### **DESCRIPTION** **154-1.1** This item shall consist of a subbase course composed of granular materials constructed on a prepared subgrade or underlying course in accordance with these specifications, and in conformity with the dimensions and typical cross-section shown on the plans. #### **MATERIALS** **154-2.1 Materials.** The subbase material shall consist of hard durable particles or fragments of granular aggregates, recycled asphalt pavement (RAP), and/or recycled concrete pavement (RCO). The material may be obtained from gravel pits, stockpiles, or may be produced from a crushing and screening plant with proper blending. The materials from these sources shall meet the requirements for gradation, quality, and consistency. The material shall be free from vegetative matter, excessive amounts of clay, and other objectionable substances; uniformly blended; and be capable of being compacted into a dense, stable subbase. The subbase material shall exhibit a California Bearing Ratio (CBR) value of at least 20 when tested in accordance with ASTM D1883. The subbase material shall meet the gradation specified in the table below. # **Subbase Gradation Requirements** | Sieve
designation | Percentage | e by weight passing
sieves | Contractor's
Final | Job Control
Grading Band | |-----------------------|----------------------|--------------------------------------|-----------------------|--------------------------------------| | | Subbase
Aggregate | Recycled
pavement
(RAP or RCO) | Gradation | Tolerances ¹
(Percent) | | 3 inch
(75 mm) | 100 | | | 0 | | 1 1/2 inch (37.5 mm) | | 100 | | 0 | | 3/4 inch
(19.0 mm) | 70-100 | 70-100 | | ±10 | | No. 10 (2.00 mm) | 20-100 | 20-100 | | ±10 | | No. 40 (425 μm) | 5-60 | 5-60 | | ±5 | | No. 200
(75 μm) | 0-10 | 0-10 | | ±5 | ¹The "Job Control Grading Band Tolerances" shall be applied to "Contractor's Final Gradation" to establish the job control grading band. Item P-154 Subbase Course 97 of 102 The portion of the material passing the No. 40 (425 μ m) sieve shall have a liquid limit of not more than 25 and a plasticity index of not more than six (6) when tested in accordance with ASTM D4318. # 154-2.2 Sampling and testing. - **a. Aggregate base materials.** Samples shall be taken by the Contractor per ASTM D75 for initial aggregate subbase requirements and gradation. Material shall meet the requirements in paragraphs 154-2.1. The Contractor shall submit to the Resident Project Representative (RPR) certified test results showing that the aggregate meets the Material requirements of this section. Tests shall be representative of the material to be used for the project. - **b. Gradation requirements.** The Contractor shall take at least one aggregate subbase sample per day in the presence of the RPR to check the final gradation. Samples shall be taken from the in-place, uncompacted material at sampling locations determined by the RPR on a random basis per ASTM D3665. Sampling shall be per ASTM D75 and tested per ASTM C136 and ASTM C117. Results shall be furnished to the RPR by the Contractor each day during construction. Material shall meet the requirements in paragraph 154-2.1. - **154-2.3 Separation Geotextile.** Separation geotextile shall be Class 2; 0.02 sec⁻¹ permittivity per ASTM D4491; Apparent opening size per ASTM D4751 with 0.60 mm maximum average roll value. - **154-2.4 Geogrid.** Not used. #### CONSTRUCTION METHODS **154-3.1 General.** The subbase course shall be placed where designated on the plans or as directed by the RPR. The material shall be shaped and thoroughly compacted within the tolerances specified. Granular subbases which, due to grain sizes or shapes, are not sufficiently stable to support the construction equipment without movement, shall be mechanically modified to the depth necessary to provide stability as directed by the RPR. The mechanical modification shall include the addition of a fine-grained medium to bind the particles of the subbase material sufficiently to furnish a bearing strength, so the course will not deform under construction equipment traffic. **154-3.2 Preparing underlying course.** Prior to constructing the subbase course, clean the underlying course or subgrade of all foreign substances. The surface of the underlying course or subgrade shall meet specified compaction and surface tolerances in accordance with Item P-152. Correct ruts, soft yielding spots in the underlying courses, and subgrade areas having inadequate compaction and/or deviations of the surface from the specified requirements, by loosening and removing soft or unsatisfactory material, adding approved material, reshaping to line and grade, and recompacting to specified density requirements. For cohesionless underlying courses or subgrades containing sands or gravels, as defined in ASTM D2487, the surface shall be stabilized prior to placement of the overlying course by mixing the overlying course material into the underlying course, and compacting by approved methods. The stabilized material shall be considered as part of the underlying course and shall meet all requirements for the underlying course. The finished underlying course shall not be disturbed by traffic or other operations and shall be maintained in a satisfactory condition until the overlying course is placed. The underlying course shall be checked and accepted by the RPR before placing and spreading operations are started. To protect the subgrade and to
ensure proper drainage, spreading of the subbase shall begin along the centerline of the pavement on a crowned section or on the high side of pavements with a one-way slope. **154-3.3 Control Strip.** The first half-day of subbase construction shall be considered as a control strip for the Contractor to demonstrate, in the presence of the RPR, that the materials, equipment, and construction processes meet the requirements of this specification. The sequence and manner of rolling necessary to obtain specified density requirements shall be determined. The maximum compacted Item P-154 Subbase Course 98 of 102 thickness may be increased to a maximum of 12 inches (300 mm) upon the Contractor's demonstration that approved equipment and operations will uniformly compact the lift to the specified density. The RPR must witness this demonstration and approve the lift thickness prior to full production. Control strips that do not meet specification requirements shall be reworked, re-compacted, or removed and replaced at the Contractor's expense. Full operations shall not begin until the control strip has been accepted by the RPR. The Contractor shall use the same equipment, materials, and construction methods for the remainder of construction, unless adjustments made by the Contractor are approved in advance by the RPR. **154-3.4 Placement.** The material shall be placed and spread on the prepared underlying layer by spreader boxes or other devices as approved by the RPR, to a uniform thickness and width. The equipment shall have positive thickness controls to minimize the need for additional manipulation of the material. Dumping from vehicles that require re-handling shall not be permitted. Hauling over the uncompacted base course shall not be permitted. The material shall not be placed when the underlying course is soft or yielding. The material shall meet gradation and moisture requirements prior to compaction. Material may be free-draining and the minimum moisture content shall be established for placement and compaction of the material. The material shall be constructed in lifts as established in the control strip, but not less than 4 inches (100 mm) nor more than 12 inches (300 mm) of compacted thickness. When more than one lift is required to establish the layer thickness shown on the plans, the construction procedure described here shall apply to each lift. No lift shall be covered by subsequent lifts until tests verify that compaction requirements have been met. The Contractor shall rework, re-compact and retest any material placed which does not meet the specifications. 154-3.5 Compaction. The subbase material shall be compacted, adjusting moisture as necessary, to be within $\pm 2\%$ of optimum moisture. The field density of the compacted material shall be at least 100% of the maximum density as specified in paragraph 154-3.9a. If the specified density is not attained, the area of the lift represented by the test shall be reworked and/or re-compacted and additional random tests made. This procedure shall be followed until the specified density is reached. Maximum density refers to maximum dry density at optimum moisture content unless otherwise specified. **154-3.6 Weather limitation**. Material shall not be placed unless the ambient air temperature is at least 40°F (4°C) and rising. Work on subbase course shall not be conducted when the subgrade is wet or frozen or the subbase material contains frozen material. **154-3.7 Maintenance**. No base or surface course shall be placed on the subbase until the subbase has been accepted by the RPR. The Contractor shall maintain the completed course in satisfactory condition throughout placement of subsequent layers. When material has been exposed to excessive rain, snow, or freeze-thaw conditions, the Contractor shall verify that materials still meet all specification requirements before placement of additional material. Equipment may be routed over completed sections of subbase course, provided the equipment does not damage the subbase course and the equipment is routed over the full width of the completed subbase course. Any damage to the subbase course from routing equipment over the subbase course shall be repaired by the Contractor at their expense. **154-3.8 Surface tolerance.** In those areas on which a subbase or base course is to be placed, the surface shall be tested for smoothness and accuracy of grade and crown. Any portion lacking the required smoothness or failing in accuracy of grade or crown shall be scarified to a depth of at least 3 inches (75 mm), reshaped and re-compacted to grade until the required smoothness and accuracy are obtained and approved by the RPR. The Contractor shall perform all final smoothness and grade checks in the presence Item P-154 Subbase Course 99 of 102 of the RPR. Any deviation in surface tolerances shall be corrected by the Contractor at the Contractor's expense. - **a. Smoothness.** The finished surface shall not vary more than $+/-\frac{1}{2}$ inch (12 mm) when tested with a 12-foot (3.7-m) straightedge applied parallel with and at right angles to the centerline. The straightedge shall be moved continuously forward at half the length of the 12-foot (3.7-m) straightedge for the full length of each line on a 50-foot (15-m) grid. - **b. Grade.** The grade and crown shall be measured on a 50-foot (15-m) grid and shall be within +/-0.05 feet (15 mm) of the specified grade. - **154-3.9** Acceptance sampling and testing. The aggregate base course shall be accepted for density and thickness on an area basis. Two test shall be made for density and thickness for each 1200 square yards (1000 square meters). Sampling locations will be determined on a random basis per ASTM D3665. - **a. Density.** The RPR shall perform all density tests. Each area shall be accepted for density when the field density is at least 100% of the maximum density of laboratory specimens compacted and tested per ASTM D1557. The in-place field density shall be determined per ASTM D6938 using Procedure A, the direct transmission method, and ASTM D6938 shall be used to determine the moisture content of the material. The machine shall be calibrated in accordance with ASTM D6938. If the specified density is not attained, the area represented by the failed test shall be reworked and/or recompacted and two additional random tests made. This procedure shall be followed until the specified density is reached. Maximum density refers to maximum dry density at optimum moisture content unless otherwise specified. When the material has greater than 30 percent retained on the ¾ inch (19.0 mm) sieve, use methods in ASTM D1557 and the procedures in AASHTO T180 Annex for correction of maximum dry density and optimum moisture for oversized particles. **b. Thickness.** The thickness of the base course shall be within +0 and -1/2 inch (12 mm) of the specified thickness as determined by depth tests taken by the Contractor in the presence of the RPR for each area. Where the thickness is deficient by more than 1/2-inch (12 mm), the Contractor shall correct such areas at no additional cost by scarifying to a depth of at least 3 inches (75 mm), adding new material of proper gradation, and the material shall be blended and recompacted to grade. The Contractor shall replace, at his expense, base material where depth tests have been taken. #### METHOD OF MEASUREMENT - **154-4.1** Subbase course shall be measured by the number of cubic yards of subbase course material placed and compacted to specified density and plan thickness requirements in the completed course. The quantity of subbase course material shall be measured in final position based upon survey of the completed work computed from elevations to the nearest 0.01 foot. On individual depth measurements, thicknesses more than 1/2 inch (12 mm) in excess of that shown on the plans shall be considered as the specified thickness plus 1/2 inch (12 mm) in computing the yardage for payment. Subbase materials shall not be included in any other excavation quantities. - **154-4.2** Separation geotextile shall be measured by the number of square yards of materials placed and accepted by the RPR as complying with the plans and specifications excluding seam overlaps and edge anchoring. Item P-154 Subbase Course 100 of 102 #### BASIS OF PAYMENT **154-5.1** Payment shall be made at the contract unit price per cubic yard for subbase course. This price shall be full compensation for furnishing all materials; for all preparation, hauling, and placing of these materials; and for all labor, equipment, tools, and incidentals necessary to complete the item. **154-5.2** Payment shall be made at the contract unit price per square yard for separation geotextile-class 2. The price shall be full compensation for furnishing all labor, equipment, material, anchors, and necessary incidentals. Payment will be made under: | Item P-154-5.1 | Subbase Course - per cubic yard | |----------------|---| | Item P-154-5.2 | Separation geotextile - Class 2 - per square yard | #### REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. # ASTM International (ASTM) | ASTM C117 | Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing | |------------|---| | ASTM C136 | Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates | | ASTM D75 | Standard Practice for Sampling Aggregates | | ASTM D698 | Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)) | | ASTM D1556 | Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone
Method | | ASTM D1557 | Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)) | | ASTM D2487 | Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) | | ASTM D4253 | Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table | | ASTM D4759 | Practice for Determining the Specification Conformance of Geosynthetics | | ASTM D4318 | Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils | | ASTM D6938 | Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth) | | | | # American Association of State Highway and Transportation Officials (AASHTO) M 288 Geotextile Specification for Highway Applications #### **END OF ITEM P-154** Item P-154 Subbase Course 101 of 102 Page Intentionally Blank Item P-154 Subbase Course 102 of 102 # Item P-209 Crushed Aggregate Base Course #### **DESCRIPTION** **209-1.1** This item consists of a base course composed of crushed aggregate base constructed on a prepared course in accordance with these specifications and in conformity to the dimensions and typical cross-sections shown on the plans. #### **MATERIALS** **209-2.1 Crushed aggregate base.** Crushed aggregate shall consist of clean, sound, durable particles of crushed stone or crushed gravel and shall be free from coatings of clay, silt, organic material, clay lumps or balls or other deleterious materials or coatings. The method used to produce the crushed gravel shall result in the fractured particles in the finished product as consistent and uniform as practicable. Fine aggregate portion, defined as the portion passing the No. 4 (4.75 mm) sieve shall consist of fines from the coarse aggregate crushing operation. The fine aggregate shall be produced by crushing stone, gravel, or slag that meet the coarse aggregate requirements for wear and soundness. Aggregate base material requirements are listed in the following table. # **Crushed Aggregate Base Material Requirements** | Material Test | Requirement | Standard | | | |--|--|------------|--|--| | | Coarse Aggregate | | | | | Resistance to Degradation | Loss: 45% maximum | ASTM C131 | | | | Soundness of Aggregates
by Use of Sodium Sulfate or
Magnesium Sulfate | Loss after 5 cycles: 12% maximum using Sodium sulfate - or - 18% maximum using magnesium sulfate | ASTM C88 | | | | Percentage of Fractured Particles | Minimum 90% by weight of particles with at least
two fractured faces and 98% with at least one
fractured face ¹ | ASTM D5821 | | | | Flat Particles, Elongated Particles, or Flat and Elongated Particles | 10% maximum, by weight, of flat, elongated, or flat and elongated particles ² | ASTM D4791 | | | | Fine Aggregate | | | | | | Liquid limit | Less than or equal to 25 | ASTM D4318 | | | | Plasticity Index | Not more than five (5) | ASTM D4318 | | | ¹ The area of each face shall be equal to at least 75% of the smallest mid-sectional area of the piece. When two fractured faces are contiguous, the angle between the planes of fractures shall be at least 30 degrees to count as two fractured faces. ² A flat particle is one having a ratio of width to thickness greater than five (5); an elongated particle is one having a ratio of length to width greater than five (5). **209-2.2 Gradation requirements.** The gradation of the aggregate base material shall meet the requirements of the gradation given in the following table when tested per ASTM C117 and ASTM C136. The gradation shall be well graded from coarse to fine and shall not vary from the lower limit on one sieve to the high limit on an adjacent sieve or vice versa. # **Gradation of Aggregate Base** | Sieve Size | Design Range
Percentage by Weight
passing | Contractor's Final
Gradation | Job Control Grading Band
Tolerances ¹
(Percent) | |------------------------------|---|---------------------------------|--| | 2 inch
(50 mm) | 100 | | 0 | | 1-1/2 inch
(37.5 mm) | 95-100 | | ±5 | | 1 inch
(25.0 mm) | 70-95 | | ±8 | | 3/4 inch
(19.0 mm) | 55-85 | | ±8 | | No. 4 (4.75 mm) | 30-60 | | ±8 | | No. 40 ² (425 μm) | 10-30 | | ±5 | | No. 200 ² (75 μm) | 0-5 | | ±3 | ¹ The "Job Control Grading Band Tolerances for Contractor's Final Gradation" in the table shall be applied to "Contractor's Final Gradation" to establish a job control grading band. The full tolerance still applies if application of the tolerances results in a job control grading band outside the design range. #### 209-2.3 Sampling and Testing. - **a. Aggregate base materials.** The Contractor shall take samples of the aggregate base in accordance with ASTM D75 to verify initial aggregate base requirements and gradation. Material shall meet the requirements in paragraph 209-2.1. This sampling and testing will be the basis for approval of the aggregate base quality requirements. - **b. Gradation requirements.** The Contractor shall take at least two aggregate base samples per day in the presence of the Resident Project Representative (RPR) to check the final gradation. Sampling shall be per ASTM D75. Material shall meet the requirements in paragraph 209-2.2. The samples shall be taken from the in-place, un-compacted material at sampling points and intervals designated by the RPR. - **209-2.4 Separation Geotextile**. Used under P-154 Subbase Course. See P-154 for more information. #### **CONSTRUCTION METHODS** **209-3.1 Control strip.** The first half-day of construction shall be considered the control strip. The Contractor shall demonstrate, in the presence of the RPR, that the materials, equipment, and construction processes meet the requirements of the specification. The sequence and manner of rolling necessary to $^{^2}$ The fraction of material passing the No 200 (75 $\mu m)$ sieve shall not exceed two-thirds the fraction passing the No 40 (425 $\mu m)$ sieve. obtain specified density requirements shall be determined. The maximum compacted thickness may be increased to a maximum of 12 inches (300 mm) upon the Contractor's demonstration that approved equipment and operations will uniformly compact the lift to the specified density. The RPR must witness this demonstration and approve the lift thickness prior to full production. Control strips that do not meet specification requirements shall be reworked, re-compacted or removed and replaced at the Contractor's expense. Full operations shall not continue until the control strip has been accepted by the RPR. The Contractor shall use the same equipment, materials, and construction methods for the remainder of construction, unless adjustments made by the Contractor are approved by the RPR. - **209-3.2 Preparing underlying subgrade and/or subbase**. The underlying subgrade and/or subbase shall be checked and accepted by the RPR before base course placing and spreading operations begin. Reproof rolling of the subgrade or proof rolling of the subbase in accordance with Item P-152, at the Contractor's expense, may be required by the RPR if the Contractor fails to ensure proper drainage or protect the subgrade and/or subbase. Any ruts or soft, yielding areas due to improper drainage conditions, hauling, or any other cause, shall be corrected before the base course is placed. To ensure proper drainage, the spreading of the base shall begin along the centerline of the pavement on a crowned section or on the high side of the pavement with a one-way slope. - **209-3.3 Production**. The aggregate shall be uniformly blended and, when at a satisfactory moisture content per paragraph 209-3.5, the approved material may be transported directly to the placement. - **209-3.4 Placement**. The aggregate shall be placed and spread on the prepared underlying layer by spreader boxes or other devices as approved by the RPR, to a uniform thickness and width. The equipment shall have positive thickness controls to minimize the need for additional manipulation of the material. Dumping from vehicles that require re-handling shall not be permitted. Hauling over the uncompacted base course shall not be permitted. The aggregate shall meet gradation and moisture requirements prior to compaction. The base course shall be constructed in lifts as established in the control strip, but not less than 4 inches (100 mm) nor more than 12 inches (300 mm) of compacted thickness. When more than one lift is required to establish the layer thickness shown on the plans, the construction procedure described here shall apply to each lift. No lift shall be covered by subsequent lifts until tests verify that compaction requirements have been met. The Contractor shall rework, re-compact and retest any material placed which does not meet the specifications at the Contractor's expense. **209-3.5 Compaction**. Immediately after completion of the spreading operations, compact each layer of the base course, as specified, with approved compaction equipment. The number, type, and weight of rollers shall be sufficient to compact the material to the required density within the same day that the aggregate is placed on the subgrade. The field density of each compacted lift of material shall be at least 100% of the maximum density of laboratory specimens prepared from samples of the subbase material delivered to the jobsite. The laboratory specimens shall be compacted and tested in accordance with ASTM D1557. The moisture content of the material during placing operations shall be within ± 2 percentage points of the optimum moisture content as determined by ASTM D1557.
Maximum density refers to maximum dry density at optimum moisture content unless otherwise specified. - **209-3.6 Weather limitations.** Material shall not be placed unless the ambient air temperature is at least 40°F (4°C) and rising. Work on base course shall not be conducted when the subgrade or subbase is wet or frozen or the base material contains frozen material. - **209-3.7 Maintenance.** The base course shall be maintained in a condition that will meet all specification requirements. When material has been exposed to excessive rain, snow, or freeze-thaw conditions, prior to placement of additional material, the Contractor shall verify that materials still meet all specification requirements. Equipment may be routed over completed sections of base course, provided that no damage results and the equipment is routed over the full width of the completed base course. Any damage resulting to the base course from routing equipment over the base course shall be repaired by the Contractor at the Contractor's expense. - **209-3.8 Surface tolerances.** After the course has been compacted, the surface shall be tested for smoothness and accuracy of grade and crown. Any portion lacking the required smoothness or failing in accuracy of grade or crown shall be scarified to a depth of at least 3 inches (75 mm), reshaped and recompacted to grade until the required smoothness and accuracy are obtained and approved by the RPR. Any deviation in surface tolerances shall be corrected by the Contractor at the Contractor's expense. The smoothness and accuracy requirements specified here apply only to the top layer when base course is constructed in more than one layer. - **a. Smoothness.** The finished surface shall not vary more than 3/8-inch (9 mm) when tested with a 12-foot (3.7-m) straightedge applied parallel with and at right angles to the centerline. The straightedge shall be moved continuously forward at half the length of the 12-foot (3.7-m) straightedge for the full length of each line on a 50-foot (15-m) grid. - **b. Grade.** The grade and crown shall be measured on a 50-foot (15-m) grid and shall be within +0 and -1/2 inch (12 mm) of the specified grade. - **209-3.9 Acceptance sampling and testing.** Crushed aggregate base course shall be accepted for density and thickness on an area basis. Two tests shall be made for density and thickness for each 1200 square yds (1000 m²). Sampling locations will be determined on a random basis per ASTM D3665 - **a. Density.** The RPR shall perform all density tests. Each area shall be accepted for density when the field density is at least 100% of the maximum density of laboratory specimens compacted and tested per ASTM 1557. The in-place field density shall be determined per ASTM D6938 using Procedure A, the direct transmission method, and ASTM D6938 shall be used to determine the moisture content of the material. The machine shall be calibrated in accordance with ASTM D6938. If the specified density is not attained, the area represented by the failed test must be reworked and/or recompacted and two additional random tests made. This procedure shall be followed until the specified density is reached. Maximum density refers to maximum dry density at optimum moisture content unless otherwise specified. **b. Thickness.** Depth tests shall be made by test holes at least 3 inches (75 mm) in diameter that extend through the base. The thickness of the base course shall be within +0 and -1/2 inch (12 mm) of the specified thickness as determined by depth tests taken by the Contractor in the presence of the RPR for each area. Where the thickness is deficient by more than 1/2-inch (12 mm), the Contractor shall correct such areas at no additional cost by scarifying to a depth of at least 3 inches (75 mm), adding new material of proper gradation, and the material shall be blended and recompacted to grade. The Contractor shall replace, at his expense, base material where depth tests have been taken. ### METHOD OF MEASUREMENT **209-4.1** The quantity of crushed aggregate base course will be determined by measurement of the number of cubic yards of material actually constructed and accepted by the RPR as complying with the plans and specifications. Base materials shall not be included in any other excavation quantities. ## **BASIS OF PAYMENT** **209-5.1** Payment shall be made at the contract unit price per cubic yard for crushed aggregate base course. This price shall be full compensation for furnishing all materials, for preparing and placing these materials, and for all labor, equipment tools, and incidentals necessary to complete the item. Payment will be made under: Item P-209-5.1 Crushed Aggregate Base Course - per cubic yard ### **REFERENCES** The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. # ASTM International (ASTM) | ASTM C29 | Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate | |------------|--| | ASTM C88 | Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate | | ASTM C117 | Standard Test Method for Materials Finer than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing | | ASTM C131 | Standard Test Method for Resistance to Degradation of Small-Size
Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine | | ASTM C136 | Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates | | ASTM C142 | Standard Test Method for Clay Lumps and Friable Particles in Aggregates | | ASTM D75 | Standard Practice for Sampling Aggregates | | ASTM D698 | Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)) | | ASTM D1556 | Standard Test Method for Density and Unit Weight of Soil in Place by
the Sand-Cone Method | | ASTM D1557 | Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN-m/m³)) | | ASTM D2167 | Standard Test Method for Density and Unit Weight of Soil in Place by
the Rubber Balloon Method | | ASTM D2419 | Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate | | ASTM D3665 | Standard Practice for Random Sampling of Construction Materials | | ASTM D4318 | Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils | | ASTM D4491 | Standard Test Methods for Water Permeability of Geotextiles by Permittivity | | ASTM D4643 | Standard Test Method for Determination of Water Content of Soil and Rock by Microwave Oven Heating | | |---|---|--| | ASTM D4751 | Standard Test Methods for Determining Apparent Opening Size of a Geotextile | | | ASTM D4791 | Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate | | | ASTM D5821 | Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate | | | ASTM D6938 | Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth) | | | ASTM D7928 | Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis | | | American Association of State Highway and Transportation Officials (AASHTO) | | | Standard Specification for Geosynthetic Specification for Highway Applications **END OF ITEM P-209** M288 Page Intentionally Blank #### Item P-306 Lean Concrete Base Course #### **DESCRIPTION** **306-1.1** This item shall consist of a lean concrete subbase material that is composed of aggregate and cement uniformly blended together and mixed with water. The mixture may also include approved cementitious additives, in the form of fly ash or slag, and chemical admixtures. The mixed material shall be spread, shaped, and consolidated using concrete paving equipment in accordance with these specifications and in conformity to the lines, grades, dimensions, and typical cross-sections shown on the plans. ### **MATERIALS** **306-2.1 Aggregate**. The coarse aggregate fraction shall be crushed stone, crushed or uncrushed gravel, crushed and adequately seasoned, air-cooled, iron blast furnace slag, crushed recycled concrete, or a combination thereof. The fine aggregate fraction may be part of the natural aggregate blend as obtained from the borrow source or it may be natural sand that is added at the time of mixing. The aggregate shall meet the gradation and material requirements in the tables below. ### **Aggregate Material Requirements** | Material Test | Requirement | Standard | | |---|--|------------|--| | Coarse Aggregate Portion (retained on the No. 4 (4.75 mm) sieve) | | | | | Resistance to Degradation | Loss: 40% maximum | ASTM C131 | | | Soundness of Aggregates
by Use of Sodium Sulfate or
Magnesium Sulfate | Loss after 5 cycles: 10% maximum using Sodium sulfate - or - 15% maximum using magnesium sulfate | ASTM C88 | | | Flat Particles, Elongated
Particles, or Flat and
Elongated Particles ¹ | 10% maximum, by weight, for fraction retained on the ½ inch (12.5mm) sieve and 10% maximum, by weight, for the fraction passing the 1/2-inch (12.5 mm) sieve | ASTM D4791 | | | Clay lumps and friable particles | Less than or equal to 3 percent | ASTM C142 | | | Fine
Aggregate Portion (passing the No. 40 (425µm) sieve) | | | | | Clay lumps and friable particles | Less than or equal to 3 percent | ASTM C142 | | | Soundness of Aggregates
by Use of Sodium Sulfate or
Magnesium Sulfate | Loss after 5 cycles: 10% maximum using Sodium sulfate - or - 15% maximum using magnesium sulfate | ASTM C88 | | A flat particle is one having a ratio of width to thickness greater than five (5); an elongated particle is one having a ratio of length to width greater than five (5). ## **Aggregate Gradation for Lean Concrete** | Sieve Size | Percentage by Weight Passing Sieves | | |----------------------|-------------------------------------|--| | (square openings) | Gradation B | | | 1-1/2 inch (37.5 mm) | | | | 1 inch (25.0 mm) | 100 | | | 3/4 inch (19.0 mm) | 70 - 100 | | | No. 4 (4.75 mm) | 35 - 65 | | | No. 40 (425 μm) | 15 - 30 | | | No. 200 (75 μm) | 0 - 15 | | ## 306-2.2 Sampling and testing. **a. Aggregate base materials.** The Contractor shall take samples of the aggregate base stockpile in accordance with ASTM D75 to verify initial aggregate base requirements and gradation. Material shall meet the requirements in paragraphs 306-2.1 and 306-2.2. This sampling and testing will be the basis for approval of the aggregate base quality requirements. 306-2.3 Cement. Cement shall conform to the requirements of ASTM C150, Type I. - **306-2.4 Cementitious additives**. Pozzolanic and slag cement may be added to the lean concrete mix. If used, each material must meet the following requirements: - **a. Pozzolan.** Pozzolanic materials must meet the requirements of ASTM C618, Class F, or N with the exception of loss of ignition, where the maximum shall be less than 6%. - **b. Slag cement (ground granulated blast furnace (GGBF) slag).** Slag shall conform to ASTM C989. Grade 100 or 120. - **306-2.5 Chemical admixtures.** The Contractor shall submit certificates indicating that the material to be furnished meets all the requirements listed below. In addition, the RPR may require the Contractor to submit complete test data showing that the material to be furnished meets all the requirements of the cited specification. - **a. Air-entraining admixtures.** Air-entraining admixtures shall meet the requirements of ASTM C260. - **b.** Water-reducing admixtures. Water-reducing, set-controlling admixtures shall meet the requirements of ASTM C494, Type A, D, E, F, or G. Water-reducing admixtures shall be added at the mixer separately from air-entraining admixtures in accordance with the manufacturer's printed instructions. The air entrainment agent and the water-reducing admixture shall be compatible. - **c. Retarding admixtures.** Retarding admixtures shall meet the requirements of ASTM C494, Type B or D. - **d. Accelerating admixtures.** Accelerating admixtures shall meet the requirements of ASTM C494, Type C. - **306-2.6 Water**. Water used in mixing or curing shall be from potable water sources. Other sources shall be tested in accordance with ASTM C1602 prior to use. - **306-2.7 Curing materials**. For curing lean concrete, use white-pigmented, liquid membrane-forming compound conforming to ASTM C309, Type 2, Class B, or clear or translucent Type 1-D, Class B with white fugitive dye. - **306-2.8 Bond Breaker.** See specification P-501 Cement Concrete Pavement for bond breaker layer. ### **COMPOSITION OF MIXTURE** **306-3.1 Mix design**. The lean concrete mix design shall be based on trial batch results conducted in the laboratory. The lean concrete shall be designed to meet the criteria in this section. Compressive strength shall not be less than 500 pounds per square inch (3,445 kPa) nor greater than 800 pounds per square inch (5,516 kPa) at seven (7) days. Compressive strengths shall be taken as the average of two compressive strength test results. All compressive strength specimens shall be prepared and tested in accordance with ASTM C192 and ASTM C39, respectively. The percentage of air entrainment shall be 6%, $\pm 1/2\%$. Air content shall be determined by testing in accordance with ASTM C231 for gravel and stone coarse aggregate and ASTM C173 for slag and other highly porous coarse aggregate. If there is a change in aggregate sources, type of cement used, or pozzolanic materials, a new mix design must be submitted **306-3.2 Submittals**. At least 30 days prior to the placement of the lean concrete, the Contractor shall submit certified test reports to the RPR for those materials proposed for use during construction, as well as the mix design information for the lean concrete material. The certification shall identify the specifications and test standard, the name of the testing laboratory, the date of the tests, and a statement that the materials comply with the applicable specifications. Tests older than six (6) months shall not be used. The submittal package shall include the following: - **a.** Sources of materials, including aggregate, cement, admixtures, and curing and bond breaking materials. - **b.** Physical properties of the aggregates, cement, admixtures, curing and bond breaking materials. - **c.** Mix design: - Mix identification number - Weight of saturated surface-dry aggregates (fine and coarse) - Combined aggregate gradation - Cement factor - Water content - Water-cementitious material ratio (by weight) - Volume of admixtures and yield for one cubic yard (cubic meter) of lean concrete - Laboratory test results: - Slump - Unit weight - Air content - Compressive strength at 3, 7, and 28 days (average values) - Wet-dry and/or Freeze-thaw weight loss Where applicable, the Contractor shall submit a jointing plan for transverse joints in the lean concrete layer for approval by the RPR. During production, the Contractor shall submit batch tickets for each delivered load. ## **EQUIPMENT** - **306-4.1** All equipment necessary to mix, transport, place, compact, and finish the lean concrete material shall be furnished by the Contractor and is subject to inspection and approval by the RPR. The Contractor shall provide certification that all equipment conforms to the requirements of ASTM C94. - **306-4.2 Forms.** Straight side forms shall be made of steel and shall be furnished in sections not less than 10 feet (3 m) in length. Forms shall have a depth equal to the pavement thickness at the edge. Flexible or curved forms of proper radius shall be used for curves of 100 feet (30 m) radius or less. Forms shall be provided with adequate devices for secure settings so that when in place they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms with battered top surfaces and bent, twisted or broken forms shall not be used. Built-up forms shall not be used, except as approved by the RPR. The forms shall contain provisions for locking the ends of abutting sections together tightly for secure setting. Wood forms may be used under special conditions, when accepted by the RPR. - **306-4.3 Concrete pavers.** A fixed form or slip-form concrete paver may be used to place lean concrete. The paver shall be fully energized, self-propelled and capable of spreading, consolidating, and finishing the lean concrete material, true to grade, tolerances, and cross-sections. The paver shall be of sufficient weight and power to construct the maximum specified concrete paving lane width, at adequate forward speed, without transverse, longitudinal or vertical instability or without displacement. Slip-form pavers shall be equipped with electronic or hydraulic horizontal and vertical control devises. Bridge deck pavers are approved as paver-finishing machines for lean concrete, provided they are capable of handling the amount of lean concrete required for the full-lane width specified, and capable of spreading, consolidating, and finishing the lean concrete material, true to grade, tolerances, and cross-sections. **306-4.4 Vibrators.** For fixed-form construction, vibrators may be either the surface pan type or internal type with either immersed tube or multiple spuds for the full width of the slab. They may be attached to the spreader, the finishing machine, or mounted on a separate carriage. They shall not come in contact with the subgrade or forms. For slip-form construction, the paver shall be accomplished by internal vibrators for the full width and depth of the pavement being placed. The number, spacing, frequency, and eccentric weights of vibrators shall be provided to achieve acceptable consolidation without segregation and finishing quality. Internal vibrators may be supplemented by vibrating screeds operating on the surface of the lean concrete. Vibrators and screeds shall automatically stop operation when forward motion ceases. An override switch shall be provided. Hand held vibrators may be used in irregular areas. **306-4.5 Joint saws.** The Contractor shall provide a sufficient number of saws with adequate power to cut contraction or construction joints to the required dimensions as shown on the plans. The Contractor shall provide at least one standby saw in good working order. #### CONSTRUCTION METHODS **306-5.1 Control Strip.** The first half-day of construction shall be considered the control strip. The Contractor shall demonstrate, in the presence of the RPR, that the materials, equipment, and construction processes meet the requirements of the specification. Control strips that do not meet specification requirements shall be removed and replaced at the Contractor's expense. Full operations shall not continue until the control strip has been accepted by the RPR. Upon acceptance of the control strip by the RPR, the Contractor shall use the same equipment, materials, and construction methods for the remainder of construction, unless adjustments made by the Contractor are approved in advance by the RPR. **306-5.2 Weather limitations.** The Contractor shall follow the recommended practices in American Concrete Institute (ACI)
306R, Guide to Cold Weather Concreting. The temperature of the mixed lean concrete shall not be less than 50°F (10°C) at the time of placement. The lean concrete shall not be placed when the ambient temperature is below 40°F (4°C) or when conditions indicate that the temperature may fall below 35°F (2°C) within 24 hours. The lean concrete shall not be placed on frozen underlying courses. The Contractor shall follow the recommended practices in ACI 305R, Guide to Hot Weather Concreting. The lean concrete temperature from initial mixing through final cure shall not exceed 90°F (32°C). When the maximum daily air temperature exceeds 85°F (30°C), the forms and/or the underlying material shall be sprinkled with water before placing the lean concrete. The Contractor should stop operations prior to and during rain allowing time to cover and protect any plastic lean concrete. Areas damaged by rain shall be refinished or replaced at the Contractor's expense. **306-5.3 Maintenance.** The Contractor shall protect the lean concrete from environmental or mechanical damage. Traffic shall not be allowed on the pavement until test specimens made per ASTM C31 have attained a compressive strength of 500 psi (3445 kPa) when tested per ASTM C39. The Contractor shall maintain continuity of the applied curing method for the entire curing period. **306-5.4 Form setting**. Form sections shall be tightly locked and shall be free from play or movement in any direction. The forms shall not deviate from true line by more than 1/4 inch (6 mm) at any joint. The top face of the form shall not vary from a true plane more than 1/8 inch (3 mm) in 10 feet (3 m), and the upstanding leg shall not vary more than 1/4 inch (6 mm). Forms shall be cleaned and oiled prior to the placing of lean concrete. **306-5.5 Preparation of underlying course**. The underlying course shall be checked and accepted by the RPR before placing operations begin. Prior to placing the material, the final grade should be firm, moist and free of frost. Use of chemicals to eliminate frost will not be permitted. The underlying course shall be wetted in advance of placing the lean concrete base course. **306-5.6 Grade control.** Grade control shall be as necessary to construct the layer to the profile and cross-sections as shown on the plans. **306-5.7 Mixing.** The batch plant site, layout, equipment, and provisions for transporting material shall assure a continuous supply of material to the work. Stockpiles shall be constructed in a manner that prevents segregation and intermixing of deleterious materials. All lean concrete shall be mixed and delivered to the site per the requirements of ASTM C94. The mixing time should be adequate to produce lean concrete that is uniform in appearance, with all ingredients evenly distributed. Mixing time shall be measured from the time all materials are emptied into the drum (provided all the water is added before one-fourth the preset mixing time has elapsed) and continues until the time the discharge chute is opened to deliver the lean concrete. If mixing in a batch plant, the mixing time shall not be less than 50 or greater than 90 seconds. If mixing in a truck mixer, the mixing time shall not be less than 70 or more than 125 truck-drum revolutions at a mixing speed of not less than six (6) or more than 18 truck-drum revolutions per minute. The elapsed time from the addition of cementitious material to the mix until the lean concrete is deposited in place at the work site shall not exceed 45 minutes when the concrete is hauled in non-agitating trucks, or 90 minutes when it is hauled in truck mixers or truck agitators. Re-tempering lean concrete will not be permitted, except when delivered in truck mixers. With truck mixers, additional water may be added to the batch materials if the addition of water is added within 45 minutes after the initial mixing operations and the water/cement ratio specified in the mix design is not exceeded. **306-5.8 Placing.** The lean concrete material shall be placed continuously at a uniform rate on the underlying course minimizing segregation and handling of the mix. Rakes shall not be allowed for spreading the lean concrete. **306-5.9 Finishing.** Shape the finished surface of the lean concrete base layer to the specified lines, grades, and cross-section. Hand finishing will not be permitted except in areas where the mechanical finisher cannot operate. The surface of the lean concrete shall not be textured. **306-5.10 Construction limitations.** All placement and finishing operations shall be completed within two (2) hours from the start of mixing. Material not completed within the 2-hour time limit shall be removed and replaced at the Contractor's expense. At the end of each day's construction and/or when operations are interrupted for more than 30 minutes, a straight transverse construction joint shall be formed by a header or by cutting back into the compacted material to form a true vertical face. Completed portions may be opened to light traffic when it has achieved its 7-day strength and the curing is not damaged. **306-5.11 Joints**. Locate all longitudinal and transverse construction joints as shown on the plans. Longitudinal joints shall be within 6 inches (150 mm) of planned joints in the overlaying concrete pavement and transverse joints shall be within 3 inches (75 mm) the planned joints of the overlying concrete surface. Joints shall be sawn as soon as the base can support the saws without damage to the lean concrete base. Joints shall be constructed by sawing the hardened lean concrete to a depth of at least one-third the thickness of the lean concrete base, or 1/5th the depth of the lean concrete base when constructed using early entry saws. **306-5.12** Curing. Immediately after the finishing operations are complete and within two (2) hours of placement of the lean concrete, the entire surface and edges of the newly placed lean concrete shall be sprayed uniformly with white pigmented, liquid membrane forming curing compound conforming to ASTM C309, Type 2, Class B or clear or translucent Type 1-D, Class B with white fugitive dye in accordance with paragraph 306-2.7. The layer should be kept moist using a moisture-retaining cover or a light application of water until the curing material is applied. The curing compound shall not be applied during rainfall. The curing material shall be applied at a maximum coverage of 200 square feet per gallon (5.0 m²/l) using pressurized mechanical sprayers. The spraying equipment shall be a fully atomizing type equipped with a tank agitator. At the time of use, the curing compound in the tank shall be thoroughly and uniformly mixed with the pigment. During application, the curing compound shall be continuously stirred by mechanical means. Edges of the lean concrete layer shall be sprayed with curing compound immediately following placement with slip-form pavers or when side-forms are removed. Hand spraying of odd widths or shapes and lean concrete surfaces exposed by the removal of forms is permitted. The lean concrete temperature during curing shall be in accordance with paragraph 306-5.2. If the curing material becomes damaged from any cause, including sawing operations, within the required 7-day curing period or until the overlying course is constructed, the Contractor shall immediately repair the damaged areas by application of additional curing compound or other means approved by the RPR. - **306-5.13 Surface tolerance.** The Contractor shall perform smoothness and grade checks daily. Any area not meeting smoothness and grade shall be corrected by the Contractor at the Contractor's expense. The Contractor shall provide smoothness and grade data to the RPR on a daily basis. - **a. Smoothness.** The finished surface shall not vary more than ±3/8-inch (9 mm) when tested with a 12-foot (3.7-m) straightedge applied parallel with and at right angles to the centerline, and. moved continuously forward at half the length of the 12-foot (3.7-m) straightedge for the full length of each line on a [50-foot (15-m)] grid. The Contractor shall correct any high spots more than 3/8 inch (9 mm) in 12-foot (3.7-m) with a grinding machine or remove and replace the material at the Contractor's expense. Any areas that have been ground shall have curing compound reapplied. - **b. Grade.** The grade shall be measured on a 50-foot (15-m) grid and shall be within +/-0.05 feet (15 mm) of the specified grade. When the surface is more than 1/2 inch (12 mm) above the grade shown in the plans, the surface shall be corrected at the Contractor's expense to an elevation that falls within a tolerance of 1/4 inch (6 mm). - **306-5.14 Bond-breaker.** See specification P-501 Cement Concrete Pavement for bond breaker layer. #### MATERIAL ACCEPTANCE - **306-6.1 Sampling and testing.** Acceptance sampling and testing to determine conformance with the requirements specified in this section will be performed by the RPR for each 1200 square yards (1000 square meters). Sampling locations will be determined by the RPR on a random basis per ASTM D3665. - **a.** Compressive Strength. One sample of freshly delivered lean concrete will be taken for compressive strength for each 1200 square yards (1000 square meters) in accordance with ASTM C172 and air content tests in accordance with ASTM C231. Two test cylinders will be made and cured from the sample per ASTM C31 and the 7-day compressive strength of each cylinder determined per ASTM C39. The compressive strength will be computed by averaging the two 7-day compressive strengths. The Contractor shall provide for the initial curing of cylinders in accordance with ASTM C31 during the 24 hours after molding. **b. Thickness.** Cores shall be drilled by the Contractor at two different sampling locations for thickness determination for each 1200 square yards (1000 square meters). Thickness will be determined by measuring the depth of core holes and
computed by averaging the thickness determination of the two locations. Core holes shall be filled by the Contractor with lean concrete base or non-shrink grout. ## 306-6.2 Acceptance. - **a. Strength.** If the lean concrete fails to meet the minimum compressive strength requirements, the Contractor shall remove and replaced the material at the Contractor's expense. - **b. Thickness.** If the average thickness is not deficient by more than 1/2 inch (12 mm) from the plan thickness, full payment shall be made. When such measurement is deficient by more than 1/2 inch (12 mm) but less than one inch (25 mm) from the plan thickness, the area **represented by the test** shall be removed and replaced at the Contractor's expense or shall be permitted to remain in-place at an adjusted payment of 75% of the contract unit price. #### METHOD OF MEASUREMENT **306-7.1** The quantity of lean concrete base course will be determined by the number of square yard (m²) of lean concrete actually constructed and accepted by the RPR as complying with the plans and specifications. #### **BASIS OF PAYMENT** **306-8.1** The accepted quantities of lean concrete will be paid for at the contract unit price per square yard (m²) for lean concrete base. The price and payment shall be full compensation for furnishing and placing all materials, provided; however, for any pavement found deficient in thickness as specified in paragraph 306-6.2b, the reduced unit price shall be paid. Payment will be made under the following items: Item P-306-8.1 Lean concrete base course, 6-Inch - per square yard. ## REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. ## ASTM International (ASTM) | ASTM C31 | Standard Practice for Making and Curing Concrete Test Specimens in the Field | |----------|---| | ASTM C33 | Standard Specification for Concrete Aggregates | | ASTM C39 | Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens | | ASTM C94 | Standard Specification for Ready-Mixed Concrete | |--------------------------------|--| | ASTM C136 | Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates | | ASTM C150 | Standard Specification for Portland Cement | | ASTM C172 | Standard Practice for Sampling Freshly Mixed Concrete | | ASTM C173 | Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method | | ASTM C174 | Standard Test Method for Measuring Thickness of Concrete Elements
Using Drilled Concrete Cores | | ASTM C192 | Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory | | ASTM C231 | Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method | | ASTM C260 | Standard Specification for Air-Entraining Admixtures for Concrete | | ASTM C1260 | Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) | | ASTM C309 | Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete | | ASTM C494 | Standard Specification for Chemical Admixtures for Concrete | | ASTM C595 | Standard Specification for Blended Hydraulic Cements | | ASTM C618 | Specification for Coal Fly Ash and Raw and Calcined Natural Pozzolans for Use in Concrete | | ASTM C989 | Standard Specification for Slag Cement for Use in Concrete and Mortars | | ASTM C1567 | Standard Test Method for Determining the Potential Alkali-Silica
Reactivity of Combinations of Cementitious Materials and Aggregates
(Accelerated Mortar-Bar Method) | | ASTM C1602 | Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete | | American Association of State | Highway and Transportation Officials (AASHTO) | | AASHTO T136 | Standard Method of Test for Freezing-and-Thawing Tests of Compacted Soil-Cement Mixtures | | ASTM D3665 | Standard Practice for Random Sampling of Construction Materials | | American Concrete Institute (A | ACI) | | ACI 305R | Guide to Hot Weather Concreting | # **END OF ITEM P-306** Guide to Cold Weather Concreting ACI 306R ## Item P-403 Asphalt Mix Pavement Surface and Base Course #### **DESCRIPTION** **403-1.1** This item shall consist of pavement courses composed of mineral aggregate and asphalt binder mixed in a central mixing plant and placed on a prepared course in accordance with these specifications and shall conform to the lines, grades, thicknesses, and typical cross-sections shown on the plans. Each course shall be constructed to the depth, typical section, and elevation required by the plans and shall be rolled, finished, and approved before the placement of the next course. #### **MATERIALS** - **403-2.1 Aggregate.** Aggregates shall consist of crushed stone, crushed gravel, crushed slag, screenings, natural sand and mineral filler, as required. The aggregates should have no known history of detrimental pavement staining due to ferrous sulfides, such as pyrite. Coarse aggregate is the material retained on the No. 4 (4.75 mm) sieve. Fine aggregate is the material passing the No. 4 (4.75 mm) sieve. - a. Coarse aggregate. Coarse aggregate shall consist of sound, tough, durable particles, free from films of matter that would prevent thorough coating and bonding with the asphalt material and free from organic matter and other deleterious substances. Coarse aggregate material requirements are given in the table below. ### **Coarse Aggregate Material Requirements** | Material Test | Requirement | Standard | |--|--|------------| | Resistance to Degradation | Loss: 40% maximum for surface, asphalt binder, and leveling course | ASTM C131 | | | Loss: 50% maximum for base course | | | Soundness of Aggregates | Loss after 5 cycles: | ASTM C88 | | by Use of Sodium Sulfate or | 12% maximum using Sodium sulfate - or - | | | Magnesium Sulfate | 18% maximum using magnesium sulfate | | | Clay lumps and friable particles | 0.3% maximum | ASTM C142 | | Percentage of Fractured
Particles | For pavements designed for aircraft gross weights of 60,000 pounds (27200 kg) or more: | ASTM D5821 | | | Minimum 75% by weight of particles with at least two fractured faces and 85% with at least one fractured face ¹ | | | | For pavements designed for aircraft gross weights less than 60,000 pounds (27200 kg): | | | | Minimum 50% by weight of particles with at least two fractured faces and 65% with at least one fractured face ¹ | | | Flat, Elongated, or Flat and Elongated Particles | 8% maximum, by weight, of flat, elongated, or flat and elongated particles with a value of 5:1 ² | ASTM D4791 | | Bulk density of slag ³ | Weigh not less than 70 pounds per cubic foot (1.12 Mg/cubic meter) | ASTM C29. | ¹ The area of each face shall be equal to at least 75% of the smallest mid-sectional area of the piece. When two fractured faces are contiguous, the angle between the planes of fractures shall be at least 30 degrees to count as two fractured faces. **b. Fine aggregate.** Fine aggregate shall consist of clean, sound, tough, durable, angular shaped particles produced by crushing stone, slag, or gravel and shall be free from coatings of clay, silt, or other objectionable matter. Natural (non-manufactured) sand may be used to obtain the gradation of the aggregate blend or to improve the workability of the mix. Fine aggregate material requirements are listed in the table below. ² A flat particle is one having a ratio of width to thickness greater than five (5); an elongated particle is one having a ratio of length to width greater than five (5). ³ Only required if slag is specified. ### **Fine Aggregate Material Requirements** | Material Test | Requirement | Standard | |---|--|------------| | Liquid limit | 25 maximum | ASTM D4318 | | Plasticity Index | 4 maximum | ASTM D4318 | | Soundness of Aggregates
by Use of Sodium Sulfate or
Magnesium Sulfate | Loss after 5 cycles:
10% maximum using Sodium sulfate - or -
15% maximum using magnesium sulfate | ASTM C88 | | Clay lumps and friable particles | 0.3% maximum | ASTM C142 | | Sand equivalent | 45 minimum | ASTM D2419 | | Natural Sand | 0 to 15% maximum by weight of total aggregate | ASTM D1073 | - **c. Sampling.** ASTM D75 shall be used in sampling coarse and fine aggregate, and ASTM C183 shall be used in sampling mineral filler. - **403-2.2 Mineral filler.** Mineral filler (baghouse fines) may be added in addition to material naturally present in the aggregate. Mineral filler shall meet the requirements of ASTM D242. ## **Mineral filler Requirements** | Material Test | Requirement | Standard | |------------------|-------------|------------| | Plasticity Index | 4 maximum | ASTM D4318 | - **403-2.3 Asphalt binder.** Asphalt binder shall conform to ASTM D6373 Performance Grade (PG) 64-28 for surface course and PG 58-28 for base course. - **403-2.4 Anti-stripping agent.** Any anti-stripping agent or additive (anti-strip) shall be heat stable and shall not change the asphalt binder grade beyond specifications. Anti-strip shall be an approved material of the Department of Transportation of the State in which the project is located. ### **COMPOSITION** - **403-3.1 Composition of mixture.** The asphalt plant mix shall be composed of a mixture of well-graded aggregate, filler and anti-strip agent if required, and asphalt binder. The several aggregate
fractions shall be sized, handled in separate size groups, and combined in such proportions that the resulting mixture meets the grading requirements of the job mix formula (JMF). - **403-3.2 Job mix formula (JMF) laboratory.** The laboratory used to develop the JMF shall possess a current certificate of accreditation, listing D3666 from a national accrediting authority and all test methods required for developing the JMF, and listed on the accrediting authority's website. A copy of the laboratory's current accreditation and accredited test methods shall be submitted to the RPR prior to start of construction. - **403-3.3 Job mix formula (JMF).** No asphalt mixture shall be placed until an acceptable mix design has been submitted to the RPR for review and accepted in writing. The RPR's review shall not relieve the Contractor of the responsibility to select and proportion the materials to comply with this section. When the project requires asphalt mixtures of differing aggregate gradations and/or binders, a separate JMF shall be submitted for each mix. Add anti-stripping agent to meet tensile strength requirements. The JMF shall be prepared by an accredited laboratory that meets the requirements of paragraph 403-3.2. The asphalt mixture shall be designed using procedures contained in Asphalt Institute MS-2 Mix Design Manual, 7th Edition. Samples shall be prepared and compacted using a Marshall compactor in accordance with ASTM D6926. Should a change in sources of materials be made, a new JMF must be submitted to the RPR for review and accepted in writing before the new material is used. After the initial production JMF has been approved by the RPR and a new or modified JMF is required for whatever reason, the subsequent cost of the new or modified JMF, including a new control strip when required by the RPR, will be borne by the Contractor. The RPR may request samples at any time for testing, prior to and during production, to verify the quality of the materials and to ensure conformance with the applicable specifications. The JMF shall be submitted in writing by the Contractor at least 30 days prior to the start of paving operations. The JMF shall be developed within the same construction season using aggregates proposed for project use. The submitted JMF shall be dated, and stamped or sealed by the responsible professional Engineer of the laboratory and shall include the following items as a minimum: - Manufacturer's Certificate of Analysis (COA) for the asphalt binder used in the JMF in accordance with paragraph 403-2.3. Certificate of asphalt performance grade is with modifier already added, if used and must indicate compliance with ASTM D6373. For plant modified asphalt binder, certified test report indicating grade certification of modified asphalt binder. - Manufacturer's Certificate of Analysis (COA) for the anti-stripping agent if used in the JMF in accordance with paragraph 403-2.4. - Certified material test reports for the course and fine aggregate and mineral filler in accordance with paragraphs 403-2.1 and 403-2.2. - Percent passing each sieve size for individual gradation of each aggregate cold feed and/or hot bin; percent by weight of each cold feed and/or hot bin used; and the total combined gradation in the JMF. - Specific Gravity and absorption of each course and fine aggregate. - Percent natural sand. - Percent fractured faces. - Percent by weight of flat particles, elongated particles, and flat and elongated particles (and criteria). - Percent of asphalt. - Number of blows or gyrations. - Laboratory mixing and compaction temperatures. - Supplier recommended mixing and compaction temperatures. - Plot of the combined gradation on the 0.45 power gradation curve. - Graphical plots of air voids, voids in the mineral aggregate (VMA), and unit weight versus asphalt content. To achieve minimum VMA during production, the mix design needs to account for material breakdown during production. - Tensile Strength Ratio (TSR). - Type and amount of Anti-strip agent when used. - Asphalt Pavement Analyzer (APA) results. - Date the JMF was developed. Mix designs that are not dated or which are from a prior construction season shall not be accepted. - Percentage and properties (asphalt content, asphalt binder properties, and aggregate properties) of reclaimed asphalt pavement (RAP) in accordance with paragraph 403-3.4, Reclaimed Hot-Mix Asphalt, if RAP is used. Table 1. Asphalt Design Criteria | Test Property | Value | Test Method | |---|--|---| | Number of blows/gyrations | 75 | | | Air voids (%) | 3.5 | ASTM D3203 | | Percent voids in mineral aggregate (VMA), minimum | See Table 2 | ASTM D6995 | | TSR ¹ | not less than 80 at a saturation of 70-80% | ASTM D4867 | | Asphalt Pavement Analyzer (APA) ² | Less than 10 mm @ 4000 passes | AASHTO T340 at 250 psi hose pressure at 64°C test temperature | Test specimens for TSR shall be compacted at 7 ± 1.0 % air voids. In areas subject to freeze-thaw, use freeze-thaw conditioning in lieu of moisture conditioning per ASTM D4867. The mineral aggregate shall be of such size that the percentage composition by weight, as determined by laboratory sieves, will conform to the gradation or gradations specified in Table 2 when tested in accordance with ASTM C136 and ASTM C117. The gradations in Table 2 represent the limits that shall determine the suitability of aggregate for use from the sources of supply, be well graded from coarse to fine and shall not vary from the low limit on one sieve to the high limit on the adjacent sieve, or vice versa. ² AASHTO T340 at 100 psi hose pressure at 64°C test temperature may be used in the interim. If this method is used the required Value shall be less than 5 mm @ 8000 passes **Table 2. Aggregate - Asphalt Pavements** | Sieve Size | Percentage by Weight Passing Sieve | | | |---|------------------------------------|----------------|--| | | Base Course | Surface Course | | | 1 inch (25.0 mm) | 100 | - | | | 3/4 inch (19.0 mm) | 90-100 | 100 | | | 1/2 inch (12.5 mm) | 68-88 | 90-100 | | | 3/8 inch (9.5 mm) | 60-82 | 72-88 | | | No. 4 (4.75 mm) | 45-67 | 53-73 | | | No. 8 (2.36 mm) | 32-54 | 38-60 | | | No. 16 (1.18 mm) | 22-44 | 26-48 | | | No. 30 (600 μm) | 15-35 | 18-38 | | | No. 50 (300 μm) | 9-25 | 11-27 | | | No. 100 (150 μm) | 6-18 | 6-18 | | | No. 200 (75 μm) | 3-6 | 3-6 | | | Voids in Mineral Aggregate (VMA) ¹ | 14 | 15 | | | Asphalt Percent: | | | | | Stone or gravel | 4.5-7.0 | 5.0-7.5 | | | Slag | 5.0-7.5 | 6.5-9.5 | | | Recommended Minimum Construction Lift Thickness | 3 inch | 2 inch | | ¹To achieve minimum VMA during production, the mix design needs to account for material breakdown during production. The aggregate gradations shown are based on aggregates of uniform specific gravity. The percentages passing the various sieves shall be corrected when aggregates of varying specific gravities are used, as indicated in the Asphalt Institute MS-2 Mix Design Manual, 7th Edition. **403-3.4 Reclaimed Asphalt Pavement (RAP).** Reclaimed asphalt pavement shall consist of reclaimed asphalt pavement (RAP), coarse aggregate, fine aggregate, mineral filler, and asphalt. Recycled asphalt shingles (RAS) shall not be allowed. The RAP shall be of a consistent gradation and asphalt content and properties. When RAP is fed into the plant, the maximum RAP chunk size shall not exceed 1-1/2 inches (38 mm). The reclaimed asphalt mix shall be designed using procedures contained in the Asphalt Institute MS-2 Mix Design Manual, 7th Edition. The percentage of asphalt in the RAP shall be established for the mixture design according to ASTM D2172 using the appropriate dust correction procedure. The JMF shall meet the requirements of paragraph 403-3.3. RAP should only be used for shoulder surface course mixes and for any intermediate courses. The use of RAP containing Coal Tar shall not be allowed. Coal Tar surface treatments must be removed prior to recycling underlying asphalt material. The amount of RAP shall be limited to **30** percent. In addition to the requirements of paragraph 403-3.3, the JMF shall indicate the percent of reclaimed asphalt pavement and the percent and grade of new asphalt binder. For the PG graded asphalt binder selected in paragraph 403-2.3, adjust as follows: **a.** For 0-20% RAP, there is no change in virgin asphalt binder content. **b.** For >20 to 30% RAP, select asphalt binder one grade softer, i.e., PG 64-22 would soften to PG 58-28. **403-3.5 Control strip**. Full production shall not begin until an acceptable control strip has been constructed and accepted in writing by the RPR. The Contractor shall prepare and place a quantity of asphalt according to the JMF. The underlying grade or pavement structure upon which the control strip is to be constructed shall be the same as the remainder of the course represented by the control strip. The Contractor will not be allowed to place the control strip until the Contractor quality control program (CQCP), showing conformance with the requirements of paragraph 403-5.1, has been accepted, in writing, by the RPR. The control strip will consist of at least 250 tons (227 metric tons) or 1/2 sublot, whichever is greater. The control strip shall be placed in two lanes of the same width and depth to be used in production with a longitudinal cold joint. The cold joint must be cut back in accordance with paragraph 403-4.13 using the same procedure that will be used during production. The cold joint for the control strip will be an exposed construction joint at least four (4) hours old or when the mat has cooled to less than 160°F (71°C). The equipment used in construction of the control strip shall be the same type, configuration and weight to be used on the project. The control strip shall
be evaluated for acceptance as a single lot in accordance with the acceptance criteria in paragraph 403-6.1 and 403-6.2. The control strip will be considered acceptable by the RPR if the gradation, asphalt content, and VMA are within the action limits specified in paragraph 403-5.5a; and Mat density greater than or equal to 94%, air voids 3.5% +/- 1%, and joint density greater than or equal to 92%. If the control strip is unacceptable, necessary adjustments to the JMF, plant operation, placing procedures, and/or rolling procedures shall be made and another control strip shall be placed. Unacceptable control strips shall be removed at the Contractor's expense. The control strip will be considered one lot for payment based upon the average of a minimum of 3 samples(no sublots required for control strip). Payment will only be made for an acceptable control strip in accordance with paragraph 403-8.1. #### CONSTRUCTION METHODS **403-4.1 Weather limitations.** The asphalt shall not be placed upon a wet surface or when the surface temperature of the underlying course is less than specified in Table 4. The temperature requirements may be waived by the RPR, if requested; however, all other requirements including compaction shall be met. | M-4 This land | Base Temperature (Minimum) | | | |---|----------------------------|-----------|--| | Mat Thickness | Degrees F | Degrees C | | | 3 inches (7.5 cm) or greater | 40 | 4 | | | Greater than 2 inches (50 mm) but less than 3 inches (7.5 cm) | 45 | 7 | | **Table 4. Surface Temperature Limitations of Underlying Course** **403-4.2 Asphalt plant.** Plants used for the preparation of asphalt shall conform to the requirements of American Association of State Highway and Transportation Officials (AASHTO) M156 including the following items: - **a. Inspection of plant.** The RPR, or RPR's authorized representative, shall have access, at all times, to all areas of the plant for checking adequacy of equipment; inspecting operation of the plant: verifying weights, proportions, and material properties; and checking the temperatures maintained in the preparation of the mixtures. - **b. Storage bins and surge bins.** The asphalt mixture stored in storage and/or surge bins shall meet the same requirements as asphalt mixture loaded directly into trucks. Asphalt mixture shall not be stored in storage and/or surge bins for a period greater than twelve (12) hours. If the RPR determines there is an excessive heat loss, segregation or oxidation of the asphalt mixture due to temporary storage, temporary storage shall not be allowed. - **403-4.3 Aggregate stockpile management.** Aggregate stockpiles shall be constructed in such a manner that prevents segregation and intermixing of deleterious materials. Aggregates from different sources shall be stockpiled, weighed and batched separately at the concrete batch plant. Aggregates that have become segregated or mixed with earth or foreign material shall not be used. A continuous supply of materials shall be provided to the work to ensure continuous placement. - **403-4.4 Hauling equipment.** Trucks used for hauling asphalt shall have tight, clean, and smooth metal beds. To prevent the asphalt from sticking to the truck beds, the truck beds shall be lightly coated with a minimum amount of paraffin oil, lime solution, or other material approved by the RPR. Petroleum products shall not be used for coating truck beds. Each truck shall have a suitable cover to protect the mixture from adverse weather. When necessary, to ensure that the mixture will be delivered to the site at the specified temperature, truck beds shall be insulated or heated and covers shall be securely fastened. - **403-4.4.1 Material transfer vehicle (MTV).** A material transfer vehicle is not required. - **403-4.5 Asphalt pavers.** Asphalt pavers shall be self-propelled with an activated heated screed, capable of spreading and finishing courses of asphalt that will meet the specified thickness, smoothness, and grade. The paver shall have sufficient power to propel itself and the hauling equipment without adversely affecting the finished surface. The asphalt paver shall be equipped with a control system capable of automatically maintaining the specified screed grade and elevation. If the spreading and finishing equipment in use leaves tracks or indented areas, or produces other blemishes in the pavement that are not satisfactorily corrected by the scheduled operations, the use of such equipment shall be discontinued. The paver shall be capable of paving to a minimum width specified in paragraph 401-4.11. - **403-4.6 Rollers.** The number, type, and weight of rollers shall be sufficient to compact the asphalt to the required density while it is still in a workable condition without crushing of the aggregate, depressions or other damage to the pavement surface. Rollers shall be in good condition, capable of operating at slow speeds to avoid displacement of the asphalt. All rollers shall be specifically designed and suitable for compacting asphalt concrete and shall be properly used. Rollers that impair the stability of any layer of a pavement structure or underlying soils shall not be used. - **403-4.6.1 Density device.** The Contractor shall have on site a density gauge during all paving operations in order to assist in the determination of the optimum rolling pattern, type of roller and frequencies, as well as to monitor the effect of the rolling operations during production paving. The Contractor shall also supply a qualified technician during all paving operations to calibrate the density gauge and obtain accurate density readings for all new asphalt. These densities shall be supplied to the RPR upon request at any time during construction. No separate payment will be made for supplying the density gauge and technician. - **403-4.7 Preparation of asphalt binder.** The asphalt binder shall be heated in a manner that will avoid local overheating and provide a continuous supply of the asphalt material to the mixer at a uniform temperature. The temperature of the unmodified asphalt binder delivered to the mixer shall be sufficient to provide a suitable viscosity for adequate coating of the aggregate particles, but shall not exceed 325°F (160°C) when added to the aggregate. The temperature of modified asphalt binder shall be no more than 350°F (175°C) when added to the aggregate. **403-4.8 Preparation of mineral aggregate.** The aggregate for the asphalt shall be heated and dried. The maximum temperature and rate of heating shall be such that no damage occurs to the aggregates. The temperature of the aggregate and mineral filler shall not exceed 350°F (175°C) when the asphalt binder is added. Particular care shall be taken that aggregates high in calcium or magnesium content are not damaged by overheating. The temperature shall not be lower than is required to obtain complete coating and uniform distribution on the aggregate particles and to provide a mixture of satisfactory workability. **403-4.9 Preparation of asphalt mixture.** The aggregates and the asphalt binder shall be weighed or metered and introduced into the mixer in the amount specified by the JMF. The combined materials shall be mixed until the aggregate obtains a uniform coating of asphalt binder and is thoroughly distributed throughout the mixture. Wet mixing time shall be the shortest time that will produce a satisfactory mixture, but not less than 25 seconds for batch plants. The wet mixing time for all plants shall be established by the Contractor, based on the procedure for determining the percentage of coated particles described in ASTM D2489, for each individual plant and for each type of aggregate used. The wet mixing time will be set to achieve 95% of coated particles. For continuous mix plants, the minimum mixing time shall be determined by dividing the weight of its contents at operating level by the weight of the mixture delivered per second by the mixer. The moisture content of all asphalt upon discharge shall not exceed 0.5%. **403-4.10 Application of Prime and Tack Coat.** Immediately before placing the asphalt mixture, the underlying course shall be cleaned of all dust and debris. A tack coat shall be applied in accordance with Item P-603 to all vertical and horizontal asphalt and concrete surfaces prior to placement of the first and each subsequent lift of asphalt mixture. **403-4.11 Laydown plan, transporting, placing, and finishing.** Prior to the placement of the asphalt, the Contractor shall prepare a laydown plan with the sequence of paving lanes and width to minimize the number of cold joints; the location of any temporary ramps; laydown temperature; and estimated time of completion for each portion of the work (milling, paving, rolling, cooling, etc.). The laydown plan and any modifications shall be approved by the RPR. Deliveries shall be scheduled so that placing and compacting of asphalt is uniform with minimum stopping and starting of the paver. Hauling over freshly placed material shall not be permitted until the material has been compacted, as specified, and allowed to cool to approximately ambient temperature. The Contractor, at their expense, shall be responsible for repair of any damage to the pavement caused by hauling operations. Contractor shall survey each lift of asphalt surface course and certify to RPR that every lot of each lift meets the grade tolerances of paragraph 401-6.2e before the next lift can be placed. Edges of existing asphalt pavement abutting the new work shall be saw cut and the cut off material and laitance removed. Apply a tack coat in accordance with P-603 before new asphalt material is placed against it. The speed of the paver shall be regulated to eliminate pulling and tearing of the asphalt mat. Placement of the asphalt mix shall begin along the centerline of a crowned section or on the high side of areas
with a one way slope unless shown otherwise on the laydown plan as accepted by the RPR. The asphalt mix shall be placed in consecutive adjacent lanes having a minimum width of 10 feet (m) except where edge lanes require less width to complete the area. Additional screed sections attached to widen the paver to meet the minimum lane width requirements must include additional auger sections to move the asphalt mixture uniformly along the screed extension. The longitudinal joint in one course shall offset the longitudinal joint in the course immediately below by at least 1 foot (30 cm); however, the joint in the surface top course shall be at the centerline of crowned pavements. Transverse joints in one course shall be offset by at least 10 feet (3 m) from transverse joints in the previous course. Transverse joints in adjacent lanes shall be offset a minimum of 10 feet (3 m). On areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the asphalt may be spread and luted by hand tools. The RPR may at any time, reject any batch of asphalt, on the truck or placed in the mat, which is rendered unfit for use due to contamination, segregation, incomplete coating of aggregate, or overheated asphalt mixture. Such rejection may be based on only visual inspection or temperature measurements. In the event of such rejection, the Contractor may take a representative sample of the rejected material in the presence of the RPR, and if it can be demonstrated in the laboratory, in the presence of the RPR, that such material was erroneously rejected, payment will be made for the material at the contract unit price. Areas of segregation in the surface course, as determined by the RPR, shall be removed and replaced at the Contractor's expense. The area shall be removed by saw cutting and milling a minimum of the construction lift thickness as specified in paragraph 401-3.3, Table 2 for the approved mix design. The area to be removed and replaced shall be a minimum width of the paver and a minimum of 10 feet (3 m) long. **403-4.12 Compaction of asphalt mixture.** After placing, the asphalt mixture shall be thoroughly and uniformly compacted by self-propelled rollers. The surface shall be compacted as soon as possible when the asphalt has attained sufficient stability so that the rolling does not cause undue displacement, cracking or shoving. The sequence of rolling operations and the type of rollers used shall be at the discretion of the Contractor. The speed of the roller shall, at all times, be sufficiently slow to avoid displacement of the hot mixture and be effective in compaction. Any surface defects and/or displacement occurring as a result of the roller, or from any other cause, shall be corrected at the Contractor's expense. Sufficient rollers shall be furnished to handle the output of the plant. Rolling shall continue until the surface is of uniform texture, true to grade and cross-section, and the required field density is obtained. To prevent adhesion of the asphalt to the roller, the wheels shall be equipped with a scraper and kept moistened with water as necessary. In areas not accessible to the roller, the mixture shall be thoroughly compacted with approved power tampers. Any asphalt that becomes loose and broken, mixed with dirt, contains check-cracking, or in any way defective shall be removed and replaced with fresh hot mixture and immediately compacted to conform to the surrounding area. This work shall be done at the Contractor's expense. Skin patching shall not be allowed. **403-4.13 Joints.** The formation of all joints shall be made in such a manner as to ensure a continuous bond between the courses and obtain the required density. All joints shall have the same texture as other sections of the course and meet the requirements for smoothness and grade. The roller shall not pass over the unprotected end of the freshly laid asphalt except when necessary to form a transverse joint. When necessary to form a transverse joint, it shall be made by means of placing a bulkhead or by tapering the course. The tapered edge shall be cut back to its full depth and width on a straight line to expose a vertical face prior to placing the adjacent lane. In both methods, all contact surfaces shall be coated with an asphalt tack coat before placing any fresh asphalt against the joint. Longitudinal joints which are have been left exposed for more than four (4) hours; the surface temperature has cooled to less than 175°F (80°C); or are irregular, damaged, uncompacted or otherwise defective shall be cut back with a cutting wheel or pavement saw a maximum of 3 inches (75 mm) to expose a clean, sound, uniform vertical surface for the full depth of the course. All cutback material and any laitance produced from cutting joints shall be removed from the project. An asphalt tack coat or other product approved by the RPR shall be applied to the clean, dry joint prior to placing any additional fresh asphalt against the joint. The cost of this work shall be considered incidental to the cost of the asphalt. - **403-4.14 Saw-cut grooving.** Saw-cut grooving is not required. - **403-4.15 Diamond grinding.** Diamond grinding shall be completed prior to pavement grooving. Diamond grinding shall be accomplished by sawing with saw blades impregnated with industrial diamond abrasive. Diamond grinding shall be performed with a machine designed specifically for diamond grinding capable of cutting a path at least 3 feet (0.9 m) wide. The saw blades shall be 1/8-inch (3-mm) wide with a minimum of 55 to 60 blades per 12 inches (300 mm) of cutting head width; grooves between 0.090 and 0.130 inches (2 and 3.5 mm) wide; and peaks and ridges approximately 1/32 inch (1 mm) higher than the bottom of the grinding cut. The actual number of blades will be determined by the Contractor and depend on the hardness of the aggregate. Equipment or grinding procedures that causes ravels, aggregate fractures, spalls or disturbance to the pavement will not be permitted. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. The slurry resulting from the grinding operation shall be continuously removed and the pavement left in a clean condition. The Contractor shall apply a surface treatment per P-608 to all areas that have been subject to grinding. **403-4.16 Nighttime Paving Requirements.** The Contractor shall provide adequate lighting during any nighttime construction. A lighting plan shall be submitted by the Contractor and approved by the RPR prior to the start of any nighttime work. All work shall be in accordance with the approved CSPP and lighting plan. ### CONTRACTOR QUALITY CONTROL (CQC) - **403-5.1 General.** The Contractor shall develop a CQCP in accordance with Item C-100. No partial payment will be made for materials that are subject to specific QC requirements without an approved CQCP. - **403-5.2 Contractor quality control (QC) facilities.** The Contractor shall provide or contract for testing facilities in accordance with Item C-100. The RPR shall be permitted unrestricted access to inspect the Contractor's QC facilities and witness QC activities. The RPR will advise the Contractor in writing of any noted deficiencies concerning the QC facility, equipment, supplies, or testing personnel and procedures. When the deficiencies are serious enough to be adversely affecting the test results, the incorporation of the materials into the work shall be suspended immediately and will not be permitted to resume until the deficiencies are satisfactorily corrected. - **403-5.3 Quality Control (QC) testing.** The Contractor shall perform all QC tests necessary to control the production and construction processes applicable to these specifications and as set forth in the approved CQCP. The testing program shall include, but not necessarily be limited to, tests for the control of asphalt content, aggregate gradation, temperatures, aggregate moisture, field compaction, and surface smoothness. A QC Testing Plan shall be developed as part of the CQCP. - **a. Asphalt content.** A minimum of two tests shall be performed per day in accordance with ASTM D6307 or ASTM D2172 for determination of asphalt content. When using ASTM D6307, the correction factor shall be determined as part of the first test performed at the beginning of plant production; and as part of every tenth test performed thereafter. The asphalt content for the day will be determined by averaging the test results. - **b. Gradation.** Aggregate gradations shall be determined a minimum of twice per lot from mechanical analysis of extracted aggregate in accordance with ASTM D5444 and ASTM C136, and ASTM C117. - **c. Moisture content of aggregate.** The moisture content of aggregate used for production shall be determined a minimum of once per lot in accordance with ASTM C566. - **d. Moisture content of asphalt.** The moisture content of the asphalt shall be determined once per lot in accordance with AASHTO T329 or ASTM D1461. - **e. Temperatures.** Temperatures shall be checked, at least four times per lot, at necessary locations to determine the temperatures of the dryer, the asphalt binder in the storage tank, the asphalt at the plant, and the asphalt at the job site. - **f. In-place density monitoring.** The Contractor shall conduct any necessary testing to ensure that the specified density is being achieved. A nuclear gauge may be used to monitor the pavement density in accordance with ASTM D2950. # g. Smoothness for Contractor Quality Control. The Contractor shall perform smoothness testing in transverse and longitudinal directions daily to verify that the construction processes are producing pavement with variances less than ¼ inch in 12 feet, identifying areas that may pond water which could lead to hydroplaning of aircraft. If the smoothness criteria is not met, appropriate changes and
corrections to the construction process shall be made by the Contractor before construction continues The Contractor may use a 12-foot (3.7 m) "straightedge, a rolling inclinometer meeting the requirements of ASTM E2133 or rolling external reference device that can simulate a 12-foot (3.7m) straightedge approved by the RPR. Straight-edge testing shall start with one-half the length of the straightedge at the edge of pavement section being tested and then moved ahead one-half the length of the straightedge for each successive measurement. Testing shall be continuous across all joints. The surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between the two high points. If the rolling inclinometer or external reference device is used, the data may be evaluated using the FAA profile program, ProFAA, using the 12-foot straightedge simulation function. Smoothness readings shall not be made across grade changes or cross slope transitions. The transition between new and existing pavement shall be evaluated separately for conformance with the plans. - (1) Transverse measurements. Transverse measurements shall be taken for each day's production placed. Transverse measurements will be taken perpendicular to the pavement centerline each 50 feet (15 m) or more often as determined by the RPR. The joint between lanes shall be tested separately to facilitate smoothness between lanes. - (2) Longitudinal measurements. Longitudinal measurements shall be taken for each day's production placed. Longitudinal tests will be parallel to the centerline of paving; at the center of paving lanes when widths of paving lanes are less than 20 feet (6 m); and at the third points of paving lanes when widths of paving lanes are 20 ft (6 m) or greater. Deviations on the final surface course in either the transverse or longitudinal direction that will trap water greater than 1/4 inch (6 mm) shall be corrected with diamond grinding per paragraph 403-4.15 or by removing and replacing the surface course to full depth. Grinding shall be tapered in all directions to provide smooth transitions to areas not requiring grinding. All areas in which diamond grinding has been performed shall be subject to the final pavement thickness tolerances specified in paragraph 401-6.1d(3) Areas that have been ground shall be sealed with a surface treatment in accordance with Item P- 608. To avoid the surface treatment creating any conflict with runway or taxiway markings, it may be necessary to seal a larger area. Control charts shall be kept to show area of each day's placement and the percentage of corrective grinding required. Corrections to production and placement shall be initiated when corrective grinding is required. If the Contractor's machines and/or methods produce significant areas that need corrective actions in excess of 10 percent of a day's production, production shall be stopped until corrective measures are implemented by the Contractor. **h. Grade.** Grade shall be evaluated daily to allow adjustments to paving operations when grade measurements do not meet specifications. As a minimum, grade shall be evaluated prior to the placement of the first lift and then prior to and after placement of the surface lift. Measurements will be taken at appropriate gradelines (as a minimum at center and edges of paving lane) and longitudinal spacing as shown on cross-sections and plans. The final surface of the pavement will not vary from the gradeline elevations and cross-sections shown on the plans by more than 1/2 inch (12 mm) vertically and 0.1 feet (30 mm) laterally. The documentation will be provided by the Contractor to the RPR by the end of the following working day. Areas with humps or depressions that exceed grade or smoothness criteria and that retain water on the surface must be ground off provided the course thickness after grinding is not more than 1/2 inch (12 mm) less than the thickness specified on the plans. Grinding shall be in accordance with paragraph 403-4.15. The Contractor shall repair low areas or areas that cannot be corrected by grinding by removal of deficient areas to the depth of the final course plus ½ inch and replacing with new material. Skin patching is not allowed. - **403-5.4 Sampling.** When directed by the RPR, the Contractor shall sample and test any material that appears inconsistent with similar material being sampled, unless such material is voluntarily removed and replaced or deficiencies corrected by the Contractor. All sampling shall be in accordance with standard procedures specified. - **403-5.5 Control charts.** The Contractor shall maintain linear control charts both for individual measurements and range (i.e., difference between highest and lowest measurements) for aggregate gradation, asphalt content, and VMA. The VMA for each day shall be calculated and monitored by the QC laboratory. Control charts shall be posted in a location satisfactory to the RPR and kept current. As a minimum, the control charts shall identify the project number, the contract item number, the test number, each test parameter, the Action and Suspension Limits applicable to each test parameter, and the Contractor's test results. The Contractor shall use the control charts as part of a process control system for identifying potential problems and assignable causes before they occur. If the Contractor's projected data during production indicates a problem and the Contractor is not taking satisfactory corrective action, the RPR may suspend production or acceptance of the material. **a. Individual measurements.** Control charts for individual measurements shall be established to maintain process control within tolerance for aggregate gradation, asphalt content, and VMA. The control charts shall use the JMF target values as indicators of central tendency for the following test parameters with associated Action and Suspension Limits: #### **Control Chart Limits for Individual Measurements** | Sieve | Action Limit | Suspension Limit | |--------------------|--------------|-------------------------| | 3/4 inch (19.0 mm) | ±6% | ±9% | | 1/2 inch (12.5 mm) | ±6% | ±9% | | 3/8 inch (9.5 mm) | ±6% | ±9% | | No. 4 (4.75 mm) | ±6% | ±9% | | No. 16 (1.18 mm) | ±5% | ±7.5% | | No. 50 (300 μm) | ±3% | ±4.5% | | No. 200 (75 μm) | ±2% | ±3% | | Asphalt Content | ±0.45% | ±0.70% | | Minimum VMA | -0.5% | -1.0% | **b. Range.** Control charts for range shall be established to control process variability for the test parameters and Suspension Limits listed below. The range shall be computed for each lot as the difference between the two test results for each control parameter. The Suspension Limits specified below are based on a sample size of n = 2. Should the Contractor elect to perform more than two tests per lot, the Suspension Limits shall be adjusted by multiplying the Suspension Limit by 1.18 for n = 3 and by 1.27 for n = 4. Control Chart Limits Based on Range (n = 2) | Sieve | Suspension Limit | |--------------------|------------------| | 1/2 inch (12.5 mm) | 11% | | 3/8 inch (9.5 mm) | 11% | | No. 4 (4.75 mm) | 11% | | No. 16 (1.18 mm) | 9% | | No. 50 (300 µm) | 6% | | No. 200 (75 µm) | 3 5% | 0.8% **c.** Corrective action. The CQCP shall indicate that appropriate action shall be taken when the process is believed to be out of tolerance. The Plan shall contain sets of rules to gauge when a process is out of control and detail what action will be taken to bring the process into control. As a minimum, a process shall be deemed out of control and production stopped and corrective action taken, if: Asphalt Content - (1) One point falls outside the Suspension Limit line for individual measurements or range; or - (2) Two points in a row fall outside the Action Limit line for individual measurements. - **403-5.6 Quality control (QC) reports.** The Contractor shall maintain records and shall submit reports of QC activities daily, in accordance with the CQCP described in Item C-100. #### MATERIAL ACCEPTANCE **403-6.1. Quality Assurance Acceptance sampling and testing.** Unless otherwise specified, all acceptance sampling and testing necessary to determine conformance with the requirements specified in this section will be performed by the RPR at no cost to the Contractor except that coring as required in this section shall be completed and paid for by the Contractor. - **a. Quality Assurance (QA) testing laboratory.** The QA testing laboratory performing these acceptance tests will be accredited in accordance with ASTM D3666. The QA laboratory accreditation will be current and listed on the accrediting authority's website. All test methods required for acceptance sampling and testing will be listed on the lab accreditation. - **b.** Lot Size. A standard lot will be equal to one day's production divided into approximately equal sublots of between 400 to 600 tons. When only one or two sublots are produced in a day's production, the sublots will be combined with the production lot from the previous or next day. Where more than one plant is simultaneously producing asphalt for the job, the lot sizes will apply separately for each plant. - **c. Asphalt air voids.** Plant-produced asphalt will be tested for air voids on a sublot basis. - (1) **Sampling.** Material from each sublot shall be sampled in accordance with ASTM D3665. Samples shall be taken from material deposited into trucks at the plant or at the job site in accordance with ASTM D979. The sample of asphalt may be put in a covered metal tin and placed in an oven for not less than 30 minutes nor more than 60 minutes to maintain the material at or above the compaction temperature as specified in the JMF. - (2) **Testing.** Air voids will be determined for each sublot in
accordance with ASTM D3203 for a set of compacted specimens prepared in accordance with ASTM D6926. - **d. In-place asphalt mat and joint density.** Each sublot will be tested for in-place mat and joint density as a percentage of the theoretical maximum density (TMD). - (1) Sampling. The Contractor will cut minimum 5 inches (125 mm) diameter samples in accordance with ASTM D5361. The Contractor shall furnish all tools, labor, and materials for cleaning, and filling the cored pavement. Laitance produced by the coring operation shall be removed immediately after coring, and core holes shall be filled within one day after sampling in a manner acceptable to the RPR. - (2) **Bond.** Each lift of asphalt shall be bonded to the underlying layer. If cores reveal that the surface is not bonded, additional cores shall be taken as directed by the RPR to determine the extent of unbonded areas. Unbonded areas shall be removed by milling and replaced at no additional cost as directed by the RPR. - (3) **Thickness.** Thickness of each lift of surface course will be evaluated by the RPR for compliance to the requirements shown on the plans after any necessary corrections for grade. Measurements of thickness will be made using the cores extracted for each sublot for density measurement. The maximum allowable deficiency at any point will not be more than 1/4 inch (6 mm) less than the thickness indicated for the lift. Average thickness of lift, or combined lifts, will not be less than the indicated thickness. Where the thickness tolerances are not met, the lot or sublot shall be corrected by the Contractor at his expense by removing the deficient area and replacing with new pavement. The Contractor, at his expense, may take additional cores as approved by the RPR to circumscribe the deficient area. - (4) Mat density. One core shall be taken from each sublot. Core locations will be determined by the RPR in accordance with ASTM D3665. Cores for mat density shall not be taken closer than one foot (30 cm) from a transverse or longitudinal joint. The bulk specific gravity of each cored sample will be determined in accordance with ASTM D2726. The percent compaction (density) of each sample will be determined by dividing the bulk specific gravity of each sublot sample by the TMD for that sublot. - (5) **Joint density.** One core centered over the longitudinal joint shall be taken for each sublot which contains a longitudinal joint. Core locations will be determined by the RPR in accordance with ASTM D3665. The bulk specific gravity of each core sample will be determined in accordance with ASTM D2726. The percent compaction (density) of each sample will be determined by dividing the bulk specific gravity of each joint density sample by the average TMD for the lot. The TMD used to determine the joint density at joints formed between lots will be the lower of the average TMD values from the adjacent lots. # 403-6.2 Acceptance criteria. - **a. General.** Acceptance will be based on the implementation of the Contractor Quality Control Program (CQCP) and the following characteristics of the asphalt and completed pavements: air voids, mat density, joint density, grade and Profilograph smoothness. - **b. Air voids.** Acceptance of each lot of plant produced material for air voids will be based upon the average air void from the sublots. If the average air voids of the lot are equal to or greater than 2% and equal to or less than 5%, then the lot will be acceptable. If the average is below 2% or greater than 5%, the lot shall be removed and replaced at the Contractor's expense. - **c. Mat density.** Acceptance of each lot of plant produced material for mat density will be based on the average of all of the densities taken from the sublots. If the average mat density of the lot so established equals or exceeds 94%, the lot will be acceptable. If the average mat density of the lot is below 94%, the lot shall be removed and replaced at the Contractor's expense. - **d. Joint density.** Acceptance of each lot of plant produced asphalt for joint density will be based on the average of all of the joint densities taken from the sublots. If the average joint density of the lot so established equals or exceeds 92%, the lot will be acceptable. If the average joint density of the lot is less than 92%, the Contractor shall stop production and evaluate the method of compacting joints. Production may resume once the reason for poor compaction has been determined and appropriate measures have been taken to ensure proper compaction. - **e. Grade.** The final finished surface of the pavement of the completed project shall be surveyed to verify that the grade elevations and cross-sections shown on the plans do not deviate more than 1/2 inch (12 mm) vertically or 0.1 feet (30 mm) laterally. Cross-sections of the pavement shall be taken at a minimum 50-foot (15-m) longitudinal spacing and at all longitudinal grade breaks. Minimum cross-section grade points shall include grade at centerline, \pm 10 feet of centerline, and edge of taxiway pavement and tie in to shoulder. The survey and documentation shall be stamped and signed by a licensed surveyor. Payment for sublots that do not meet grade for over 25% of the sublot shall not be more than 95%. **f. Profilograph roughness for QA Acceptance.** The final profilograph shall be the full length of the project to facilitate testing of roughness between lots. The Contractor, in the presence of the RPR shall perform a profilograph roughness test on the completed project with a profilograph meeting the requirements of ASTM E1274 or a Class I inertial profiler meeting ASTM E950. Data and results shall be provided within 48 hrs of profilograph roughness tests. The pavement shall have an average profile index less than 15 inches per mile per 1/10 mile. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate "must grind" bumps and the Profile Index for the pavement using a 0.2-inch (5 mm) blanking band. The bump template must span one inch (25 mm) with an offset of 0.4 inches (10 mm). The profilograph must be calibrated prior to use and operated by a factory or State DOT approved, trained operator. Profilograms shall be recorded on a longitudinal scale of one inch (25 mm) equals 25 feet (7.5 m) and a vertical scale of one inch (25 mm) equals one inch (25 mm). Profilograph shall be performed one foot right and left of project centerline and 15 feet (4.5 m) right and left of project centerline. Any areas that indicate "must grind" shall be corrected with diamond grinding per paragraph 401-4.15 or by removing and replacing full depth of surface course, as directed by the RPR. Where corrections are necessary, a second profilograph run shall be performed to verify that the corrections produced an average profile index of 15 inches per mile per 1/10 mile or less. ### 403-6.3 Resampling Pavement for Mat Density. - **a. General.** Resampling of a lot of pavement will only be allowed for mat density and then, only if the Contractor requests same in writing, within 48 hours after receiving the written test results from the RPR. A retest will consist of all the sampling and testing procedures contained in paragraphs 403-6.1. Only one resampling per lot will be permitted. - (1) A redefined mat density will be calculated for the resampled lot. The number of tests used to calculate the redefined mat density will include the initial tests made for that lot plus the retests. - (2) The cost for resampling and retesting shall be borne by the Contractor. - **b. Payment for resampled lots.** The redefined mat density for a resampled lot will be used to evaluate the acceptance of that lot in accordance with paragraph 403-6.2. - **c. Outliers.** Check for outliers in accordance with ASTM E178, at a significance level of 5%. Outliers will be discarded and density determined using the remaining test values. #### METHOD OF MEASUREMENT **403-7.1 Measurement.** Plant mix asphalt mix pavement shall be measured by the number of tons (kg) of asphalt pavement used in the accepted work. Recorded batch weights or truck scale weights will be used to determine the basis for the tonnage. #### **BASIS OF PAYMENT** **403-8.1 Payment.** Payment for a lot of asphalt mixture meeting all acceptance criteria as specified in paragraph 403-6.2 shall be made at the contract unit price per ton (kg) for asphalt. The price shall be compensation for furnishing all materials, for all preparation, mixing, and placing of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item. Payment will be made under: Item P-403-8.1 Asphalt Mixture Surface Course - per ton Item P-403-8.2 Asphalt Mixture Base Course - per ton #### REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. ASTM International (ASTM) | ASTM C29 | Standard Test Method for Bulk Density ("Unit Weight") and Voids in | |----------|--| | | Aggregate | ASTM C88 Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate ASTM C117 Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing | ASTM C127 | Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate | |------------|--| | ASTM C131 | Standard Test Method for Resistance to Degradation of Small-Size
Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine | | ASTM C136 | Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates | | ASTM C142 | Standard Test Method for Clay Lumps and Friable
Particles in Aggregates | | ASTM C183 | Standard Practice for Sampling and the Amount of Testing of Hydraulic Cement | | ASTM C566 | Standard Test Method for Total Evaporable Moisture Content of
Aggregate by Drying | | ASTM D75 | Standard Practice for Sampling Aggregates | | ASTM D242 | Standard Specification for Mineral Filler for Bituminous Paving Mixtures | | ASTM D946 | Standard Specification for Penetration-Graded Asphalt Cement for Use in Pavement Construction | | ASTM D979 | Standard Practice for Sampling Bituminous Paving Mixtures | | ASTM D1073 | Standard Specification for Fine Aggregate for Bituminous Paving Mixtures | | ASTM D1074 | Standard Test Method for Compressive Strength of Bituminous Mixtures | | ASTM D1461 | Standard Test Method for Moisture or Volatile Distillates in Bituminous Paving Mixtures | | ASTM D2041 | Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures | | ASTM D2172 | Standard Test Method for Quantitative Extraction of Bitumen from Bituminous Paving Mixtures | | ASTM D2419 | Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate | | ASTM D2489 | Standard Practice for Estimating Degree of Particle Coating of Bituminous-Aggregate Mixtures | | ASTM D2726 | Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures | | ASTM D2950 | Standard Test Method for Density of Bituminous Concrete in Place by
Nuclear Methods | | ASTM D3203 | Standard Test Method for Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures | | ASTM D3381 | Standard Specification for Viscosity-Graded Asphalt Cement for Use in Pavement Construction | | ASTM D3665 | Standard Practice for Random Sampling of Construction Materials | | | | | ASTM D3666 | Standard Specification for Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials | |---------------------------------|--| | ASTM D4125 | Standard Test Methods for Asphalt Content of Bituminous mixtures by the Nuclear Method | | ASTM D4318 | Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils | | ASTM D4552 | Standard Practice for Classifying Hot-Mix Recycling Agents | | ASTM D4791 | Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate | | ASTM D4867 | Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures | | ASTM D5444 | Standard Test Method for Mechanical Size Analysis of Extracted Aggregate | | ASTM D5581 | Standard Test Method for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus (6 inch-Diameter Specimen) | | ASTM D5821 | Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate | | ASTM D6307 | Standard Test Method for Asphalt Content of Hot-Mix Asphalt by Ignition Method | | ASTM D6373 | Standard Specification for Performance Graded Asphalt Binder | | ASTM D6752 | Standard Test Method for Bulk Specific Gravity and Density of
Compacted Bituminous Mixtures Using Automatic Vacuum Sealing
Method | | ASTM D6925 | Standard Test Method for Preparation and Determination of the Relative
Density of Hot Mix Asphalt (HMA) Specimens by Means of the
SuperPave Gyratory Compactor | | ASTM D6926 | Standard Practice for Preparation of Bituminous Specimens Using
Marshall Apparatus | | ASTM D6927 | Standard Test Method for Marshall Stability and Flow of Bituminous Mixtures | | ASTM D6995 | Standard Test Method for Determining Field VMA based on the Maximum Specific Gravity of the Mix (Gmm) | | ASTM E11 | Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves | | ASTM E178 | Standard Practice for Dealing with Outlying Observations | | ASTM E2133 | Standard Test Method for Using a Rolling Inclinometer to Measure
Longitudinal and Transverse Profiles of a Traveled Surface | | American Association of State I | Highway and Transportation Officials (AASHTO) | | AASHTO M156 | Standard Specification for Requirements for Mixing Plants for Hot-
Mixed, Hot-Laid Bituminous Paving Mixtures | | AASHTO T329 | Standard Method of Test for Moisture Content of Hot Mix Asphalt (HMA) by Oven Method | AASHTO T 340 Standard Method of Test for Determining the Rutting Susceptibility of Hot Mix Asphalt (APA) Using the Asphalt Pavement Analyzer (APA) Asphalt Institute (AI) MS-2 Mix Design Manual, 7th Edition MS-26 Asphalt Binder Handbook AI State Binder Specification Database **FAA Orders** 5300.1 Modifications to Agency Airport Design, Construction, and Equipment Standards Federal Highway Administration (FHWA) Long Term Pavement Performance Binder program Software **FAARFIELD** # **END OF ITEM P-403** ### **Item P-501 Cement Concrete Pavement** ### DESCRIPTION **501-1.1** This work shall consist of pavement composed of cement concrete with reinforcement constructed on a prepared underlying surface in accordance with these specifications and shall conform to the lines, grades, thickness, and typical cross-sections shown on the plans. The terms cement concrete, hydraulic cement concrete, and concrete are interchangeable in this specification. #### **MATERIALS** # 501-2.1 Aggregates. - **a. Reactivity.** Fine and Coarse aggregates to be used in PCC on this project shall be tested and evaluated by the Contractor for alkali-aggregate reactivity in accordance with both ASTM C1260 and ASTM C1567. Tests must be representative of aggregate sources which will be providing material for production. ASTM C1260 and ASTM C1567 tests may be run concurrently. - (1) Coarse aggregate and fine aggregate shall be tested separately in accordance with ASTM C1260, however, the length of test shall be extended to 28 days (30 days from casting). Tests must have been completed within 6 months of the date of the concrete mix submittal. - (2) The combined coarse and fine aggregate shall be tested in accordance with ASTM C1567, modified for combined aggregates, using the proposed mixture design proportions of aggregates, cementitious materials, and/or specific reactivity reducing chemicals. If the expansion does not exceed 0.10% at 28 days, the proposed combined materials will be accepted. If the expansion is greater than 0.10% at 28 days, the aggregates will not be accepted unless adjustments to the combined materials mixture can reduce the expansion to less than 0.10% at 28 days, or new aggregates shall be evaluated and tested. - (3) If lithium nitrate is proposed for use with or without supplementary cementitious materials, the aggregates shall be tested in accordance with Corps of Engineers (COE) Concrete Research Division (CRD) C662 in lieu of ASTM C1567. If lithium nitrate admixture is used, it shall be nominal $30\% \pm 0.5\%$ weight lithium nitrate in water. If the expansion does not exceed 0.10% at 28 days, the proposed combined materials will be accepted. If the expansion is greater than 0.10% at 28 days, the aggregates will not be accepted unless adjustments to the combined materials mixture can reduce the expansion to less than 0.10% at 28 days, or new aggregates shall be evaluated and tested. - **b. Fine aggregate.** Grading of the fine aggregate, as delivered to the mixer, shall conform to the requirements of ASTM C33 and the parameters identified in the fine aggregate material requirements below. Fine aggregate material requirements and deleterious limits are shown in the table below. | Fine Aggregate Material Requirements | | | |---|--|------------| | Soundness of Aggregates
by Use of Sodium Sulfate or
Magnesium Sulfate | Loss after 5 cycles: 10% maximum using Sodium sulfate - or - 15% maximum using magnesium sulfate | ASTM C88 | | Sand Equivalent | 45 minimum | ASTM D2419 | | Fineness Modulus (FM) | $2.50 \le \text{FM} \le 3.40$ | ASTM C136 | | Limits for Deleterious Substances in Fine Aggregate for Concrete | | | | Clay lumps and friable particles | 1.0% maximum | ASTM C142 | | Coal and lignite | 0.5% using a medium with a density of Sp. Gr. of 2.0 | ASTM C123 | | Total Deleterious Material | 1.0% maximum | | ## **c.** Coarse aggregate. The maximum size coarse aggregate shall be 1 inch. Aggregates delivered to the mixer shall be clean, hard, uncoated aggregates consisting of crushed stone, crushed or uncrushed gravel, air-cooled iron blast furnace slag, crushed recycled concrete pavement, or a combination. The aggregates shall have no known history of detrimental pavement staining. Steel blast furnace slag shall not be permitted. Coarse aggregate material requirements and deleterious limits are shown in the table below; washing may be required to meet aggregate requirements. ## **Coarse Aggregate Material Requirements** | Material Test | Requirement | Standard | |---|---|------------| | Resistance to Degradation | Loss: 40% maximum | ASTM C131 | | Soundness of Aggregates
by Use of Sodium Sulfate or
Magnesium Sulfate | Loss after 5 cycles: 12% maximum using Sodium sulfate - or - 18% maximum using magnesium sulfate | ASTM C88 | | Flat, Elongated, or Flat and
Elongated Particles | 8% maximum, by weight, of flat, elongated, or flat and elongated particles at 5:1 for any size group coarser than 3/8 (9.5 mm) sieve ¹ | ASTM D4791 | | Bulk density of slag ² | Weigh not less than 70 pounds per cubic foot (1.12 Mg/cubic meter) | ASTM C29 | | D-cracking (Freeze-Thaw) ³ | Durability factor ≥
95 | ASTM C666 | A flat particle is one having a ratio of width to thickness greater than five (5); an elongated particle is one having a ratio of length to width greater than five (5). ² Only required if slag is specified. ³ Coarse aggregate may only be accepted from sources that have a 20-year service history for the same gradation to be supplied with no history of D-Cracking. Aggregates that do not have a 20-year record of service free from major repairs (less than 5% of slabs replaced) in similar conditions without D-cracking shall not be used unless the material currently being produced has a durability factor greater than or equal to 95 per ASTM C666. The Contractor shall submit a current certification and test results to verify the aggregate acceptability. Test results will only be accepted from a State Department of Transportation (DOT) materials laboratory or an accredited laboratory. Certification and test results which are not dated or which are over one (1) year old or which are for different gradations will not be accepted. The amount of deleterious material in the coarse aggregate shall not exceed the following limits: | Deleterious material | ASTM | Percentage
by Mass | |--|---|-----------------------| | Clay Lumps and friable particles | ASTM C142 | 1.0 | | Material finer than No. 200 sieve (75 μm) | ASTM C117 | 1.01 | | Lightweight particles | ASTM C123 using a medium with a density of Sp. Gr. of 2.0 | 0.5 | | Chert ² (less than 2.40 Sp Gr.) | ASTM C123 using a medium with a density of Sp. Gr. of 2.40) | 0.1^{3} | **Limits for Deleterious Substances in Coarse Aggregate** - **d.** Combined aggregate gradation. This specification is targeted for a combined aggregate gradation developed following the guidance presented in United States Air Force Engineering Technical Letter (ETL) 97-5: Proportioning Concrete Mixtures with Graded Aggregates for Rigid Airfield Pavements. Base the aggregate grading upon a combination of all the aggregates (coarse and fine) to be used for the mixture proportioning. Three aggregate sizes may be required to achieve an optimized combined gradation that will produce a workable concrete mixture for its intended use. Use aggregate gradations that produce concrete mixtures with well-graded or optimized aggregate combinations. The Contractor shall submit complete mixture information necessary to calculate the volumetric components of the mixture. The combined aggregate grading shall meet the following requirements: - (1) The materials selected and the proportions used shall be such that when the Coarseness Factor (CF) and the Workability Factor (WF) are plotted on a diagram as described in paragraph 501-2.1d(4) below, the point thus determined shall fall within the parallelogram described therein. - (2) The CF shall be determined from the following equation: - CF = (cumulative percent retained on the 3/8 in. (9.5 mm) sieve)(100) / (cumulative percent retained on the No. 8 (2.36 mm) sieve) - (3) The WF is defined as the percent passing the No. 8 (2.36 mm) sieve based on the combined gradation. However, WF shall be adjusted, upwards only, by 2.5 percentage points for each 94 pounds (42 kg) of cementitious material per cubic meter yard greater than 564 pounds per cubic yard (335 kg per cubic meter). - (4) A diagram shall be plotted using a rectangular scale with WF on the Y-axis with units from 20 (bottom) to 45 (top), and with CF on the X-axis with units from 80 (left side) to 30 (right side). On this diagram a parallelogram shall be plotted with corners at the following coordinates (CF-75, WF-28), (CF-75, WF-40), (CF-45, WF-32.5), and (CF-45, WF-44.5). If the point determined by the intersection of the computed CF and WF does not fall within the above parallelogram, the grading of each size of aggregate used and the proportions selected shall be changed as necessary. The point determined by the plotting of the CF and WF may be adjusted during production ± 3 WF and ± 5 CF. Adjustments to gradation may not take the point outside of the parallelogram. ¹ The limit for material finer than 75-μm is allowed to be increased to 1.5% for crushed aggregates consisting of dust of fracture that is essentially free from clay or shale. Test results supporting acceptance of increasing limit to 1.5% with statement indicating material is dust of fracture must be submitted with Concrete mix. Acceptable techniques to characterizing these fines include methylene blue adsorption or X-ray diffraction analysis. ² Chert and aggregates with less than 2.4 specific gravity. ³ The limit for chert may be increased to 1.0 percent by mass in areas not subject to severe freeze and thaw. **e.** Contractors combined aggregate gradation. The Contractor shall submit their combined aggregate gradation using the following format: **Contractor's Combined Aggregate Gradation** | Sieve Size | Contractor's Concrete mix Gradation
(Percent passing by weight) | |----------------------|--| | 2 inch (50 mm) | * | | 1-1/2 inch (37.5 mm) | * | | 1 inch (25.0 mm) | * | | 3/4 inch (19.0 mm) | * | | 1/2 inch (12.5 mm) | * | | 3/8 inch (9.5 mm) | * | | No. 4 (4.75 mm) | * | | No. 8 (2.36 mm) | * | | No. 16 (1.18 mm) | * | | No. 30 (600 µm) | * | | No. 50 (300 µm) | * | | No. 100 (150 μm) | * | **501-2.2 Cement.** Cement shall conform to the requirements of ASTM C150 Type 1. ### 501-2.3 Cementitious materials. - **a. Fly ash.** Fly ash shall meet the requirements of ASTM C618, with the exception of loss of ignition, where the maximum shall be less than 6%. Fly ash shall have a Calcium Oxide (CaO) content of less than 15% and a total alkali content less than 3% per ASTM C311. The Contractor shall furnish the previous three most recent, consecutive ASTM C618 reports for each source of fly ash proposed in the concrete mix, and shall furnish each additional report as they become available during the project. The reports can be used for acceptance or the material may be tested independently by the Resident Project Representative (RPR). - **b. Slag cement (ground granulated blast furnace (GGBF)).** Slag cement shall conform to ASTM C989, Grade 100 or Grade 120. Slag cement shall be used only at a rate between 25% and 55% of the total cementitious material by mass. - **c. Raw or calcined natural pozzolan.** Natural pozzolan shall be raw or calcined and conform to ASTM C618, Class N, including the optional requirements for uniformity and effectiveness in controlling Alkali-Silica reaction and shall have a loss on ignition not exceeding 6%. Class N pozzolan for use in mitigating Alkali-Silica Reactivity shall have a total available alkali content less than 3%. - **501-2.4 Joint seal.** The joint seal for the joints in the concrete pavement shall meet the requirements of Item P-605 and shall be of the type specified in the plans. - **501-2.5 Isolation joint filler.** Premolded joint filler for isolation joints shall conform to the requirements of ASTM D1751 or ASTM D1752 and shall be where shown on the plans. The filler for each joint shall be furnished in a single piece for the full depth and width required for the joint, unless otherwise specified by the RPR. When the use of more than one piece is required for a joint, the abutting ends shall be fastened securely and held accurately to shape by stapling or other positive fastening means satisfactory to the RPR. **501-2.6 Steel reinforcement.** Reinforcing shall conform to the following requirements: ASTM A615 Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement ASTM A706 Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement ASTM A775 Standard Specification for Epoxy-Coated Steel Reinforcing Bars ASTM A934 Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars ASTM A1064 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete ASTM A184 or A704 Bar mats Welded wire fabric shall be furnished in flat sheets only. - **501-2.7 Dowel and tie bars.** Dowel bars shall be plain steel bars conforming to ASTM A615 and shall be free from burring or other deformation restricting slippage in the concrete. - **a. Dowel Bars**. Before delivery to the construction site each dowel bar shall be epoxy coated per ASTM A1078, Type 1, with a coating thickness after curing greater than 10 mils. Patched ends are not required for Type 1 coated dowels. The dowels shall be coated with a bond-breaker recommended by the manufacturer. Dowel sleeves or inserts are not permitted. Grout retention rings shall be fully circular metal or plastic devices capable of supporting the dowel until the grout hardens. - **b. Tie Bars.** Tie bars shall be deformed steel bars and conform to the requirements of ASTM A615. Tie bars designated as Grade 60 in ASTM A615 or ASTM A706 shall be used for construction requiring bent bars. - **501-2.8 Water.** Water used in mixing or curing shall be potable. If water is taken from other sources considered non-potable, it shall meet the requirements of ASTM C1602. - **501-2.9 Material for curing concrete.** Curing materials shall conform to one of the following specifications: - **a.** Liquid membrane-forming compounds for curing concrete shall conform to the requirements of ASTM C309, Type 2, Class A, or Class B. - **b.** White polyethylene film for curing concrete shall conform to the requirements of ASTM C171. - **c.** White burlap-polyethylene sheeting for curing concrete shall conform to the requirements of ASTM C171. - **d.** Waterproof paper for curing concrete shall conform to the requirements of ASTM C171. - **501-2.10 Admixtures.** Admixtures shall conform to the following specifications: - **a. Air-entraining admixtures.** Air-entraining admixtures shall
meet the requirements of ASTM C260 and shall consistently entrain the air content in the specified ranges under field conditions. The air-entraining agent and any water reducer admixture shall be compatible. - **b. Water-reducing admixtures.** Water-reducing admixture shall meet the requirements of ASTM C494, Type A, B, or D. - **c. Other admixtures.** The use of set retarding and set-accelerating admixtures shall be approved by the RPR prior to developing the concrete mix. Retarding admixtures shall meet the requirements of ASTM C494, Type A, B, or D and set-accelerating admixtures shall meet the requirements of ASTM C494, Type C. Calcium chloride and admixtures containing calcium chloride shall not be used. - **d. Lithium Nitrate.** The lithium admixture shall be a nominal 30% aqueous solution of Lithium Nitrate, with a density of 10 pounds/gallon (1.2 kg/L), and shall have the approximate chemical form as shown below: | T | ith | ium | ۸ ۵۰ | mixet | 11110 | |---|-----|-------|------|-------|-------| | | лtп | ıııım | Aaı | mixi | ure | | Constituent | Limit (Percent by Mass) | |-------------------------|-------------------------| | LiNO3 (Lithium Nitrate) | 30 ±0.5 | | SO4 (Sulfate Ion) | 0.1 (max) | | Cl (Chloride Ion) | 0.2 (max) | | Na (Sodium Ion) | 0.1 (max) | | K (Potassium Ion) | 0.1 (max) | The lithium nitrate admixture dispensing and mixing operations shall be verified and certified by the lithium manufacturer's representative. - **501-2.11 Epoxy-resin.** All epoxy-resin materials shall be two-component materials conforming to the requirements of ASTM C881, Class as appropriate for each application temperature to be encountered, except that in addition, the materials shall meet the following requirements: - a. Material for use for embedding dowels and anchor bolts shall be Type IV, Grade 3. - **b.** Material for use as patching materials for complete filling of spalls and other voids and for use in preparing epoxy resin mortar shall be Type III, Grade as approved. - c. Material for use for injecting cracks shall be Type IV, Grade 1. - **d.** Material for bonding freshly mixed Portland cement concrete or mortar or freshly mixed epoxy resin concrete or mortar to hardened concrete shall be Type V, Grade as approved. - **501-2.12 Bond Breaker.** Fabric shall meet the requirements of AASHTO M 288 Class I fabric with elongation less than 50% at the specified strengths. A certificate of compliance (COC) shall be provided by the fabric manufacturer that the material may be used as a bond breaker. #### CONCRETE MIX - **501-3.1. General**. No concrete shall be placed until an acceptable concrete mix has been submitted to the RPR for review and the RPR has taken appropriate action. The RPR's review shall not relieve the Contractor of the responsibility to select and proportion the materials to comply with this section. - **501-3.2 Concrete Mix Laboratory.** The laboratory used to develop the concrete mix shall be accredited in accordance with ASTM C1077. The laboratory accreditation must be current and listed on the accrediting authority's website. All test methods required for developing the concrete mix must be included in the lab accreditation. A copy of the laboratory's current accreditation and accredited test methods shall be submitted to the RPR prior to start of construction. **501-3.3 Concrete Mix Proportions.** Develop the mix using the procedures contained in Portland Cement Association (PCA) publication, "Design and Control of Concrete Mixtures." Concrete shall be proportioned to achieve a 28-day flexural strength that meets or exceeds the acceptance criteria contained in paragraph 501-6.6 for a flexural strength of 650 psi per ASTM C78. The minimum cementitious material shall be adequate to ensure a workable, durable mix. The minimum cementitious material (cement plus fly ash, or slag cement) shall be 517 pounds per cubic yard (310 kg per cubic meter). The ratio of water to cementitious material, including free surface moisture on the aggregates but not including moisture absorbed by the aggregates shall be between 0.38 – 0.45 by weight. Flexural strength test specimens shall be prepared in accordance with ASTM C192 and tested in accordance with ASTM C78. At the start of the project, the Contractor shall determine an allowable slump as determined by ASTM C143 not to exceed 2 inches (50 mm) for slip-form placement. For fixed-form placement, the slump shall not exceed 3 inches (75 mm). For hand placement, the slump shall not exceed 4 inches (100 mm). The results of the concrete mix shall include a statement giving the maximum nominal coarse aggregate size and the weights and volumes of each ingredient proportioned on a one cubic yard (meter) basis. Aggregate quantities shall be based on the mass in a saturated surface dry condition. If a change in source(s) is made, or admixtures added or deleted from the mix, a new concrete mix must be submitted to the RPR for approval. The RPR may request samples at any time for testing, prior to and during production, to verify the quality of the materials and to ensure conformance with the applicable specifications. **501-3.4 Concrete Mix submittal.** The concrete mix shall be submitted to the RPR at least 30 days prior to the start of operations. The submitted concrete mix shall not be more than 180 days old and must use the materials to be used for production for the project. Production shall not begin until the concrete mix is approved in writing by the RPR. Each of the submitted concrete mixes (i.e, slip form, side form machine finish and side form hand finish) shall be stamped or sealed by the responsible professional Engineer of the laboratory and shall include the following items and quantities as a minimum: - Certified material test reports for aggregate in accordance with paragraph 501-2.1. Certified reports must include all tests required; reporting each test, test method, test result, and requirement specified (criteria). - Combined aggregate gradations and analysis; and including plots of the fine aggregate fineness modulus. - Reactivity Test Results. - Coarse aggregate quality test results, including deleterious materials. - Fine aggregate quality test results, including deleterious materials. - Mill certificates for cement and supplemental cementitious materials. - Certified test results for all admixtures, including Lithium Nitrate if applicable. - Specified flexural strength, slump, and air content. - Recommended proportions/volumes for proposed mixture and trial water-cementitious materials ratio, including actual slump and air content. - Flexural and compressive strength summaries and plots, including all individual beam and cylinder breaks. - Correlation ratios for acceptance testing and Contractor QC testing, when applicable. - Historical record of test results documenting production standard deviation, when applicable. ### 501-3.5 Cementitious materials. - **a. Fly ash.** When fly ash is used as a partial replacement for cement, the replacement rate shall be determined from laboratory trial mixes, and shall be between 20 and 30% by weight of the total cementitious material. If fly ash is used in conjunction with slag cement the maximum replacement rate shall not exceed 10% by weight of total cementitious material. - **b. Slag cement (ground granulated blast furnace (GGBF)).** Slag cement may be used. The slag cement, or slag cement plus fly ash if both are used, may constitute between 25 to 55% of the total cementitious material by weight. - **c. Raw or calcined natural pozzolan.** Natural pozzolan may be used in the concrete mix. When pozzolan is used as a partial replacement for cement, the replacement rate shall be determined from laboratory trial mixes, and shall be between 20 and 30% by weight of the total cementitious material. If pozzolan is used in conjunction with slag cement the maximum replacement rate shall not exceed 10% by weight of total cementitious material. ### 501-3.6 Admixtures. - **a. Air-entraining admixtures.** Air-entraining admixture are to be added in such a manner that will ensure uniform distribution of the agent throughout the batch. The air content of freshly mixed air-entrained concrete shall be based upon trial mixes with the materials to be used in the work adjusted to produce concrete of the required plasticity and workability. The percentage of air in the mix shall be 6.0%. Air content shall be determined by testing in accordance with ASTM C231 for gravel and stone coarse aggregate and ASTM C173 for slag and other highly porous coarse aggregate. - **b. Water-reducing admixtures.** Water-reducing admixtures shall be added to the mix in the manner recommended by the manufacturer and in the amount necessary to comply with the specification requirements. Tests shall be conducted with the materials to be used in the work, in accordance with ASTM C494. - **c. Other admixtures.** Set controlling, and other approved admixtures shall be added to the mix in the manner recommended by the manufacturer and in the amount necessary to comply with the specification requirements. Tests shall be conducted with the materials to be used in the work, in accordance with ASTM C494. - **d. Lithium nitrate.** Lithium nitrate shall be added to the mix in the manner recommended by the manufacturer and in the amount necessary to comply with the specification requirements in accordance with paragraph 501-2.10d. ### **CONSTRUCTION METHODS** **501-4.1 Control Strip.** The control strip(s) shall be to the next planned joint after the initial 250 feet (75 m) of each type of pavement construction (slip-form pilot lane, slip-form fill-in lane, or fixed form). The Contractor shall demonstrate, in the presence of the RPR, that the materials, concrete mix, equipment, construction processes, and quality control processes meet the requirements of the specifications. The concrete mixture shall be extruded from the paver meeting the edge slump
tolerance and with little or no finishing. Pilot, fill-in, and fixed-form control strips will be accepted separately. Minor adjustments to the mix design may be required to place an acceptable control strip. The production mix will be the adjusted mix design used to place the acceptable control strip. Upon acceptance of the control strip by the RPR, the Contractor must use the same equipment, materials, and construction methods for the remainder of concrete paving. Any adjustments to processes or materials must be approved in advance by the RPR. Acceptable control strips will meet edge slump tolerance and surface acceptable with little or no finishing, air content within action limits, strength equal or greater than requirements of P501-3.3. The control strip will be considered one lot for payment (no sublots required for control strip). Payment will only be made for an acceptable control strip in accordance with paragraph 501-8.1 using a lot pay factor equal to 100. - **501-4.2 Equipment.** The Contractor is responsible for the proper operation and maintenance of all equipment necessary for handling materials and performing all parts of the work to meet this specification. - **a. Plant and equipment.** The plant and mixing equipment shall conform to the requirements of ASTM C94 and/or ASTM C685. Each truck mixer shall have attached in a prominent place a manufacturer's nameplate showing the capacity of the drum in terms of volume of mixed concrete and the speed of rotation of the mixing drum or blades. The truck mixers shall be examined daily for changes in condition due to accumulation of hard concrete or mortar or wear of blades. The pickup and throwover blades shall be replaced when they have worn down 3/4 inch (19 mm) or more. The Contractor shall have a copy of the manufacturer's design on hand showing dimensions and arrangement of blades in reference to original height and depth. Equipment for transferring and spreading concrete from the transporting equipment to the paving lane in front of the finishing equipment shall be provided. The equipment shall be specially manufactured, self-propelled transfer equipment which will accept the concrete outside the paving lane and will spread it evenly across the paving lane in front of the paver and strike off the surface evenly to a depth which permits the paver to operate efficiently. ## b. Finishing equipment. - (1) **Slip-form.** The standard method of constructing concrete pavements shall be with an approved slip-form paving equipment designed and operated to spread, consolidate, screed, and finish the freshly placed concrete in one complete pass of the machine so that the end result is a dense and homogeneous pavement which is achieved with a minimum of hand finishing. The paver-finisher shall be a heavy duty, self-propelled machine designed specifically for paving and finishing high quality concrete pavements. - (2) **Fixed-form.** On projects requiring less than 10,000 cubic yards (7650 cubic meters) of concrete pavement or irregular areas at locations inaccessible to slip-form paving equipment, concrete pavement may be placed with equipment specifically designed for placement and finishing using stationary side forms. Methods and equipment shall be reviewed and accepted by the RPR. Hand screeding and float finishing may only be used on small irregular areas as allowed by the RPR. - **c. Vibrators.** Vibrator shall be the internal type. The rate of vibration of each vibrating unit shall be sufficient to consolidate the pavement without segregation or voids. The number, spacing, and frequency shall be as necessary to provide a dense and homogeneous pavement and meet the recommendations of American Concrete Institute (ACI) 309R, Guide for Consolidation of Concrete. Adequate power to operate all vibrators shall be available on the paver. The vibrators shall be automatically controlled so that they shall be stopped as forward motion ceases. The Contractor shall provide an electronic or mechanical means to monitor vibrator status. The checks on vibrator status shall occur a minimum of two times per day or when requested by the RPR. Hand held vibrators may only be used in irregular areas and shall meet the recommendations of ACI 309R. Guide for Consolidation of Concrete. **d.** Concrete saws. The Contractor shall provide sawing equipment adequate in number of units and power to complete the sawing to the required dimensions. The Contractor shall provide at least one standby saw in good working order and a supply of saw blades at the site of the work at all times during sawing operations. - **e. Fixed forms.** Straight side fixed forms shall be made of steel and shall be furnished in sections not less than 10 feet (3 m) in length. Forms shall be provided with adequate devices for secure settings so that when in place they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms with battered top surfaces and bent, twisted or broken forms shall not be used. Built-up forms shall not be used, except as approved by the RPR. The top face of the form shall not vary from a true plane more than 1/8 inch (3 mm) in 10 feet (3 m), and the upstanding leg shall not vary more than 1/4 inch (6 mm). The forms shall contain provisions for locking the ends of abutting sections together tightly for secure setting. Wood forms may be used under special conditions, when approved by the RPR. The forms shall extend the full depth of the payement section. - **501-4.3 Form setting.** Forms shall be set to line and grade as shown on the plans, sufficiently in advance of the concrete placement, to ensure continuous paving operation. Forms shall be set to withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms shall be cleaned and oiled prior to the concrete placement. - **501-4.4 Base surface preparation prior to placement.** Any damage to the prepared base, subbase, and subgrade shall be corrected full depth by the Contractor prior to concrete placement. The underlying surface shall be entirely free of frost when concrete is placed. The prepared grade shall be moistened with water, without saturating, immediately ahead of concrete placement to prevent rapid loss of moisture from concrete. Bond breaker shall be applied in accordance with 501-2.12. - **501-4.5 Handling, measuring, and batching material.** Aggregate stockpiles shall be constructed and managed in such a manner that prevents segregation and intermixing of deleterious materials. Aggregates from different sources shall be stockpiled, weighed and batched separately at the concrete batch plant. Aggregates that have become segregated or mixed with earth or foreign material shall not be used. All aggregates produced or handled by hydraulic methods, and washed aggregates, shall be stockpiled or binned for draining at least 12 hours before being batched. Store and maintain all aggregates at a uniform moisture content prior to use. A continuous supply of materials shall be provided to the work to ensure continuous placement. - **501-4.6 Mixing concrete.** The concrete may be mixed at the work site, in a central mix plant or in truck mixers. The mixer shall be of an approved type and capacity. Mixing time shall be measured from the time all materials are placed into the drum until the drum is emptied into the truck. All concrete shall be mixed and delivered to the site in accordance with the requirements of ASTM C94 or ASTM C685. Mixed concrete from the central mixing plant shall be transported in truck mixers, truck agitators, or non-agitating trucks. The elapsed time from the addition of cementitious material to the mix until the concrete is discharged from the truck should not exceed 30 minutes when the concrete is hauled in non-agitating trucks, nor 90 minutes when the concrete is hauled in truck mixers or truck agitators. In no case shall the temperature of the concrete when placed exceed 90°F (32°C). Retempering concrete by adding water or by other means will not be permitted. With transit mixers additional water may be added to the batch materials and additional mixing performed to increase the slump to meet the specified requirements provided the addition of water is performed within 45 minutes after the initial mixing operations and provided the water/cementitious ratio specified is not exceeded. - **501-4.7 Weather Limitations on mixing and placing.** No concrete shall be mixed, placed, or finished when the natural light is insufficient, unless an adequate and approved artificial lighting system is operated. - **a. Cold weather.** Unless authorized in writing by the RPR, mixing and concreting operations shall be discontinued when a descending air temperature in the shade and away from artificial heat reaches 40°F (4°C) and shall not be resumed until an ascending air temperature in the shade and away from artificial heat reaches 35°F (2°C). The aggregate shall be free of ice, snow, and frozen lumps before entering the mixer. The temperature of the mixed concrete shall not be less than 50°F (10°C) at the time of placement. Concrete shall not be placed on frozen material nor shall frozen aggregates be used in the concrete. When concreting is authorized during cold weather, water and/or the aggregates may be heated to not more than 150°F (66°C). The apparatus used shall heat the mass uniformly and shall be arranged to preclude the possible occurrence of overheated areas which might be detrimental to the materials. Curing during cold weather shall be in accordance with paragraph 501-4.13d. **b. Hot weather.** During periods of hot weather when the maximum daily air temperature exceeds 85°F (30°C), the following precautions shall be taken. The forms and/or the underlying surface shall be sprinkled with water immediately before placing the concrete. The concrete shall be placed at the
coolest temperature practicable, and in no case shall the temperature of the concrete when placed exceed 90°F (32°C). The aggregates and/or mixing water shall be cooled as necessary to maintain the concrete temperature at or not more than the specified maximum. The concrete placement shall be protected from exceeding an evaporation rate of 0.2 psf (0.98 kg/m² per hour) per hour. When conditions are such that problems with plastic cracking can be expected, and particularly if any plastic cracking begins to occur, the Contractor shall immediately take such additional measures as necessary to protect the concrete surface. If the Contractor's measures are not effective in preventing plastic cracking, paving operations shall be immediately stopped. Curing during hot weather shall be in accordance with paragraph 501-4.13e. - **c. Temperature management program.** Prior to the start of paving operation for each day of paving, the Contractor shall provide the RPR with a Temperature Management Program for the concrete to be placed to assure that uncontrolled cracking is avoided. (Federal Highway Administration HIPERPAV 3 is one example of a temperature management program.) As a minimum, the program shall address the following items: - (1) Anticipated tensile strains in the fresh concrete as related to heating and cooling of the concrete material. - (2) Anticipated weather conditions such as ambient temperatures, wind velocity, and relative humidity; and anticipated evaporation rate using Figure 19-9, PCA, Design and Control of Concrete Mixtures. - (3) Anticipated timing of initial sawing of joint. - (4) Anticipated number and type of saws to be used. - d. **Rain.** The Contractor shall have available materials for the protection of the concrete during inclement weather. Such protective materials shall consist of rolled polyethylene sheeting at least 4 mils (0.1 mm) thick of sufficient length and width to cover the plastic concrete slab and any edges. The sheeting may be mounted on either the paver or a separate movable bridge from which it can be unrolled without dragging over the plastic concrete surface. When rain appears imminent, all paving operations shall stop and all available personnel shall begin covering the surface of the unhardened concrete with the protective covering. - **501-4.8 Concrete Placement.** At any point in concrete conveyance, the free vertical drop of the concrete from one point to another or to the underlying surface shall not exceed 3 feet (1 m). The finished concrete product must be dense and homogeneous, without segregation and conforming to the standards in this specification. Backhoes and grading equipment shall not be used to distribute the concrete in front of the paver. Front end loaders will not be used. All concrete shall be consolidated without voids or segregation, including under and around all load-transfer devices, joint assembly units, and other features embedded in the pavement. Hauling equipment or other mechanical equipment can be permitted on adjoining previously constructed pavement when the concrete strength reaches a flexural strength of 550 psi (3.8 MPa), based on the average of four field cured specimens per 2,000 cubic yards (1,530 cubic meters) of concrete placed. The Contractor must determine that the above minimum strengths are adequate to protection the pavement from overloads due to the construction equipment proposed for the project. The Contractor shall have available materials for the protection of the concrete during cold, hot and/or inclement weather in accordance with paragraph 501-4.7. **a. Slip-form construction.** The concrete shall be distributed uniformly into final position by a self-propelled slip-form paver without delay. The alignment and elevation of the paver shall be regulated from outside reference lines established for this purpose. The paver shall vibrate the concrete for the full width and depth of the strip of pavement being placed and the vibration shall be adequate to provide a consistency of concrete that will stand normal to the surface with sharp well-defined edges. The sliding forms shall be rigidly held together laterally to prevent spreading of the forms. The plastic concrete shall be effectively consolidated by internal vibration with transverse vibrating units for the full width of the pavement and/or a series of equally placed longitudinal vibrating units. The space from the outer edge of the pavement to longitudinal unit shall not exceed 9 inches (23 cm) for slipform and at the end of the dowels for the fill-in lanes. The spacing of internal units shall be uniform and shall not exceed 18 inches (0.5 m). The term internal vibration means vibrating units located within the specified thickness of pavement section. The rate of vibration of each vibrating unit shall be sufficient to consolidate the pavement without, segregation, voids, or vibrator trails and the amplitude of vibration shall be sufficient to be perceptible on the surface of the concrete along the entire length of the vibrating unit and for a distance of at least one foot (30 cm). The frequency of vibration or amplitude should be adjusted proportionately with the rate of travel to result in a uniform density and air content. The paving machine shall be equipped with a tachometer or other suitable device for measuring and indicating the actual frequency of vibrations. The concrete shall be held at a uniform consistency. The slip-form paver shall be operated with as nearly a continuous forward movement as possible and all operations of mixing, delivering, and spreading concrete shall be coordinated to provide uniform progress with stopping and starting of the paver held to a minimum. If for any reason, it is necessary to stop the forward movement of the paver, the vibratory and tamping elements shall also be stopped immediately. No tractive force shall be applied to the machine, except that which is controlled from the machine. When concrete is being placed adjacent to an existing pavement, that part of the equipment which is supported on the existing pavement shall be equipped with protective pads on crawler tracks or rubber-tired wheels on which the bearing surface is offset to run a sufficient distance from the edge of the pavement to avoid breaking the pavement edge. Not more than 15% of the total free edge of each 500-foot (150 m) segment of pavement, or fraction thereof, shall have an edge slump exceeding 1/4 inch (6 mm), and none of the free edge of the pavement shall have an edge slump exceeding 3/8 inch (9 mm). (The total free edge of 500 feet (150 m) of pavement will be considered the cumulative total linear measurement of pavement edge originally constructed as nonadjacent to any existing pavement; that is, 500 feet (150 m) of paving lane originally constructed as a separate lane will have 1,000 feet (300 m) of free edge, 500 feet (150 m) of fill-in lane will have no free edge, etc.). The area affected by the downward movement of the concrete along the pavement edge shall be limited to not more than 18 inches (0.5 m) from the edge. When excessive edge slump cannot be corrected before the concrete has hardened, the area with excessive edge slump will be removed the full width of the slip form lane and replaced at the expense of the Contractor as directed by the RPR. **b. Fixed-form construction.** Forms shall be drilled in advance of being placed to line and grade to accommodate tie bars / dowel bars where these are specified. Immediately in advance of placing concrete and after all subbase operations are completed, side forms shall be trued and maintained to the required line and grade for a distance sufficient to prevent delay in placing. Side forms shall remain in place at least 12 hours after the concrete has been placed, and in all cases until the edge of the pavement no longer requires the protection of the forms. Curing compound shall be applied to the concrete immediately after the forms have been removed. Side forms shall be thoroughly cleaned and coated with a release agent each time they are used and before concrete is placed against them. Concrete shall be spread, screed, shaped and consolidated by one or more self-propelled machines. These machines shall uniformly distribute and consolidate concrete without segregation so that the completed pavement will conform to the required cross-section with a minimum of handwork. The number and capacity of machines furnished shall be adequate to perform the work required at a rate equal to that of concrete delivery. The equipment must be specifically designed for placement and finishing using stationary side forms. Methods and equipment shall be reviewed and accepted by the RPR. Concrete for the full paving width shall be effectively consolidated by internal vibrators. The rate of vibration of each vibrating unit shall be sufficient to consolidate the pavement without segregation, voids, or leaving vibrator trails. Power to vibrators shall be connected so that vibration ceases when forward or backward motion of the machine is stopped. **c. Consolidation.** Concrete shall be consolidated with the specified type of lane-spanning, gangmounted, mechanical, immersion type vibrating equipment mounted in front of the paver, supplemented, in rare instances as specified, by hand-operated vibrators. The vibrators shall be inserted into the concrete to a depth that will provide the best full-depth consolidation but not closer to the underlying material than 2 inches (50 mm). Vibrators shall not be used to transport or spread the concrete. For each paving train, at least one additional vibrator spud, or sufficient parts for rapid replacement and repair of vibrators shall be maintained at the paving site at all times. Any evidence of inadequate consolidation (honeycomb along the edges, large air pockets, or any other evidence) or over-consolidation (vibrator trails, segregation, or any other evidence) shall require the
immediate stopping of the paving operation and adjustment of the equipment or procedures as approved by the RPR. If a lack of consolidation of the hardened concrete is suspected by the RPR, referee testing may be required. Referee testing of hardened concrete will be performed by the RPR by cutting cores from the finished pavement after a minimum of 24 hours curing. The RPR shall visually examine the cores for evidence of lack of consolidation. Density determinations will be made by the RPR based on the water content of the core as taken. ASTM C642 shall be used for the determination of core density in the saturated-surface dry condition. When required, referee cores will be taken at the minimum rate of one for each 500 cubic yards (382 m²) of pavement, or fraction. The Contractor shall be responsible for all referee testing cost if they fail to meet the required density. The average density of the cores shall be at least 97% of the original concrete mix density, with no cores having a density of less than 96% of the original concrete mix density. Failure to meet the referee tests will be considered evidence that the minimum requirements for vibration are inadequate for the job conditions. Additional vibrating units or other means of increasing the effect of vibration shall be employed so that the density of the hardened concrete conforms to the above requirements. **501-4.9 Strike-off of concrete and placement of reinforcement.** Following the placing of the concrete, it shall be struck off to conform to the cross-section shown on the plans and to an elevation that when the concrete is properly consolidated and finished, the surface of the pavement shall be at the elevation shown on the plans. When reinforced concrete pavement is placed in two layers, the bottom layer shall be struck off to such length and depth that the sheet of reinforcing steel fabric or bar mat may be laid full length on the concrete in its final position without further manipulation. The reinforcement shall then be placed directly upon the concrete, after which the top layer of the concrete shall be placed, struck off, and screed. If any portion of the bottom layer of concrete has been placed more than 30 minutes without being covered with the top layer or if initial set has taken place, it shall be removed and replaced with freshly mixed concrete at the Contractor's expense. When reinforced concrete is placed in one layer, the reinforcement may be positioned in advance of concrete placement or it may be placed in plastic concrete by mechanical or vibratory means after spreading. Reinforcing steel, at the time concrete is placed, shall be free of mud, oil, or other organic matter that may adversely affect or reduce bond. Reinforcing steel with rust, mill scale or a combination of both will be considered satisfactory, provided the minimum dimensions, weight, and tensile properties of a hand wirebrushed test specimen are not less than the applicable ASTM specification requirements. **501-4.10 Joints.** Joints shall be constructed as shown on the plans and in accordance with these requirements. All joints shall be constructed with their faces perpendicular to the surface of the pavement and finished or edged as shown on the plans. Joints shall not vary more than 1/2-inch (12 mm) from their designated position and shall be true to line with not more than 1/4-inch (6 mm) variation in 10 feet (3 m). The surface across the joints shall be tested with a 12-foot (3 m) straightedge as the joints are finished and any irregularities in excess of 1/4 inch (6 mm) shall be corrected before the concrete has hardened. All joints shall be so prepared, finished, or cut to provide a groove of uniform width and depth as shown on the plans. **a. Construction.** Longitudinal construction joints shall be slip-formed or formed against side forms as shown in the plans. Transverse construction joints shall be installed at the end of each day's placing operations and at any other points within a paving lane when concrete placement is interrupted for more than 30 minutes or it appears that the concrete will obtain its initial set before fresh concrete arrives. The installation of the joint shall be located at a planned contraction or expansion joint. If placing of the concrete is stopped, the Contractor shall remove the excess concrete back to the previous planned joint. - **b. Contraction.** Contraction joints shall be installed at the locations and spacing as shown on the plans. Contraction joints shall be installed to the dimensions required by forming a groove or cleft in the top of the slab while the concrete is still plastic or by sawing a groove into the concrete surface after the concrete has hardened. When the groove is formed in plastic concrete the sides of the grooves shall be finished even and smooth with an edging tool. If an insert material is used, the installation and edge finish shall be according to the manufacturer's instructions. The groove shall be finished or cut clean so that spalling will be avoided at intersections with other joints. Grooving or sawing shall produce a slot at least 1/8 inch (3 mm) wide and to the depth shown on the plans. - **c. Isolation (expansion).** Isolation joints shall be installed as shown on the plans. The premolded filler of the thickness as shown on the plans, shall extend for the full depth and width of the slab at the joint. The filler shall be fastened uniformly along the hardened joint face with no buckling or debris between the filler and the concrete interface, including a temporary filler for the sealant reservoir at the top of the slab. The edges of the joint shall be finished and tooled while the concrete is still plastic ## d. Dowels and Tie Bars for Joints - (1) Tie bars. Tie bars shall consist of deformed bars installed in joints as shown on the plans. Tie bars shall be placed at right angles to the centerline of the concrete slab and shall be spaced at intervals shown on the plans. They shall be held in position parallel to the pavement surface and in the middle of the slab depth and within the tolerances in paragraph 501-4.10(f.). When tie bars extend into an unpaved lane, they may be bent against the form at longitudinal construction joints, unless threaded bolt or other assembled tie bars are specified. Tie bars shall not be painted, greased, or enclosed in sleeves. When slip-form operations call for tie bars, two-piece hook bolts can be installed. - (2) **Dowel bars.** Dowel bars shall be placed across joints in the proper horizontal and vertical alignment as shown on the plans. The dowels shall be coated with a bond-breaker or other lubricant recommended by the manufacturer and approved by the RPR. Dowels bars at longitudinal construction joints shall be bonded in drilled holes. - (3) Placing dowels and tie bars. Horizontal spacing of dowels shall be within a tolerance of $\pm 3/4$ inch (19 mm). The vertical location on the face of the slab shall be within a tolerance of $\pm 1/2$ inch (12 mm). The method used to install dowels shall ensure that the horizontal and vertical alignment will not be greater than 1/4 inch per feet (6 mm per 0.3 m), except for those across the crown or other grade change joints. Dowels across crowns and other joints at grade changes shall be measured to a level surface. Horizontal alignment shall be checked perpendicular to the joint edge. The portion of each dowel intended to move within the concrete or expansion cap shall be wiped clean and coated with a thin, even film of lubricating oil or light grease before the concrete is placed. Dowels shall be installed as specified in the following subparagraphs. - (a) Contraction joints. Dowels and tie bars in longitudinal and transverse contraction joints within the paving lane shall be held securely in place by means of rigid metal frames or basket assemblies of an approved type. The basket assemblies shall be held securely in the proper location by means of suitable pins or anchors. Do not cut or crimp the dowel basket tie wires. At the Contractor's option, dowels and tie bars in contraction joints may be installed by insertion into the plastic concrete using approved equipment and procedures per the paver manufacturer's design. Approval of installation methods will be based on the results of the control strip showing that the dowels and tie bars are installed within specified tolerances as verified by cores or non-destructive rebar location devices approved by the RPR. - **(b) Construction joints.** Install dowels and tie bars by the cast-in- place or the drill-and-dowel method. Installation by removing and replacing in preformed holes will not be permitted. Dowels and tie bars shall be prepared and placed across joints where indicated, correctly aligned, and securely held in the proper horizontal and vertical position during placing and finishing operations, by means of devices fastened to the forms. - (c) Joints in hardened concrete. Install dowels in hardened concrete by bonding the dowels into holes drilled into the concrete. The concrete shall have cured for seven (7) days or reached a minimum flexural strength of 450 psi (3.1 MPa) before drilling begins. Holes 1/8 inch (3 mm) greater in diameter than the dowels shall be drilled into the hardened concrete using rotary-core drills. Rotary-percussion drills may be used, provided that excessive spalling does not occur. Spalling beyond the limits of the grout retention ring will require modification of the equipment and operation. Depth of dowel hole shall be within a tolerance of $\pm 1/2$ inch (12 mm) of the dimension shown on the drawings. On completion of the drilling operation, the dowel hole shall be blown out with oil-free, compressed air. Dowels shall be bonded in the drilled holes using epoxy resin. Epoxy resin shall be injected at the back of the hole before installing the dowel and extruded to the collar during insertion of the dowel so as to completely
fill the void around the dowel. Application by buttering the dowel will not be permitted. The dowels shall be held in alignment at the collar of the hole by means of a suitable metal or plastic grout retention ring fitted around the dowel. **e. Sawing of joints.** Sawing shall commence, without regard to day or night, as soon as the concrete has hardened sufficiently to permit cutting without chipping, spalling, or tearing and before uncontrolled shrinkage cracking of the pavement occurs and shall continue without interruption until all joints have been sawn. All slurry and debris produced in the sawing of joints shall be removed by vacuuming and washing. Curing compound or system shall be reapplied in the initial saw-cut and maintained for the remaining cure period. Joints shall be cut in locations as shown on the plans. The initial joint cut shall be a minimum 1/8 inch (3 mm) wide and to the depth shown on the plans. Prior to placement of joint sealant or seals, the top of the joint shall be widened by sawing as shown on the plans. - **501-4.11 Finishing.** Finishing operations shall be a continuing part of placing operations starting immediately behind the strike-off of the paver. Initial finishing shall be provided by the transverse screed or extrusion plate. The sequence of operations shall be transverse finishing, longitudinal machine floating if used, straightedge finishing, edging of joints, and then texturing. Finishing shall be by the machine method. The hand method shall be used only on isolated areas of odd slab widths or shapes and in the event of a breakdown of the mechanical finishing equipment. Supplemental hand finishing for machine finished pavement shall be kept to an absolute minimum. Any machine finishing operation which requires appreciable hand finishing, other than a moderate amount of straightedge finishing, shall be immediately stopped and proper adjustments made or the equipment replaced. Equipment, mixture, and/or procedures which produce more than 1/4 inch (6 mm) of mortar-rich surface shall be immediately modified as necessary to eliminate this condition or operations shall cease. Compensation shall be made for surging behind the screeds or extrusion plate and settlement during hardening and care shall be taken to ensure that paving and finishing machines are properly adjusted so that the finished surface of the concrete (not just the cutting edges of the screeds) will be at the required line and grade. Finishing equipment and tools shall be maintained clean and in an approved condition. At no time shall water be added to the surface of the slab with the finishing equipment or tools, or in any other way. Fog (mist) sprays or other surface applied finishing aids specified to prevent plastic shrinkage cracking, approved by the RPR, may be used in accordance with the manufacturers requirements. - **a. Machine finishing with slipform pavers.** The slipform paver shall be operated so that only a very minimum of additional finishing work is required to produce pavement surfaces and edges meeting the specified tolerances. Any equipment or procedure that fails to meet these specified requirements shall immediately be replaced or modified as necessary. A self-propelled non-rotating pipe float may be used while the concrete is still plastic, to remove minor irregularities and score marks. Only one pass of the pipe float shall be allowed. Equipment, mixture, and/or procedures which produce more than 1/4 inch (6 mm) of mortar-rich surface shall be immediately modified as necessary to eliminate this condition or operations shall cease. Remove excessive slurry from the surface with a cutting straightedge and wipe off the edge. Any slurry which does run down the vertical edges shall be immediately removed by hand, using stiff brushes or scrapers. No slurry, concrete or concrete mortar shall be used to build up along the edges of the pavement to compensate for excessive edge slump, either while the concrete is plastic or after it hardens. - **b. Machine finishing with fixed forms.** The machine shall be designed to straddle the forms and shall be operated to screed and consolidate the concrete. Machines that cause displacement of the forms shall be replaced. The machine shall make only one pass over each area of pavement. If the equipment and procedures do not produce a surface of uniform texture, true to grade, in one pass, the operation shall be immediately stopped and the equipment, mixture, and procedures adjusted as necessary. - **c.** Other types of finishing equipment. Clary screeds, other rotating tube floats, or bridge deck finishers are not allowed on mainline paving, but may be allowed on irregular or odd-shaped slabs, and near buildings or trench drains, subject to the RPR's approval. Bridge deck finishers shall have a minimum operating weight of 7500 pounds (3400 kg) and shall have a transversely operating carriage containing a knock-down auger and a minimum of two immersion vibrators. Vibrating screeds or pans shall be used only for isolated slabs where hand finishing is permitted as specified, and only where specifically approved. - **d. Hand finishing.** Hand finishing methods will not be permitted, except under the following conditions: (1) in the event of breakdown of the mechanical equipment, hand methods may be used to finish the concrete already deposited on the grade and (2) in areas of narrow widths or of irregular dimensions where operation of the mechanical equipment is impractical. - **e. Straightedge testing and surface correction.** After the pavement has been struck off and while the concrete is still plastic, it shall be tested for trueness with a 12-foot (3.7-m) finishing straightedge swung from handles capable of spanning at least one-half the width of the slab. The straightedge shall be held in contact with the surface in successive positions parallel to the centerline and the whole area gone over from one side of the slab to the other, as necessary. Advancing shall be in successive stages of not more than one-half the length of the straightedge. Any excess water and laitance in excess of 1/8 inch (3 mm) thick shall be removed from the surface of the pavement and wasted. Any depressions shall be immediately filled with freshly mixed concrete, struck off, consolidated, and refinished. High areas shall be cut down and refinished. Special attention shall be given to assure that the surface across joints meets the smoothness requirements. Straightedge testing and surface corrections shall continue until the entire surface is found to be free from observable departures from the straightedge and until the slab conforms to the required grade and cross-section. The use of long-handled wood floats shall be confined to a minimum; they may be used only in emergencies and in areas not accessible to finishing equipment. - **501-4.12 Surface texture.** The surface of the pavement shall be finished as designated below for all newly constructed concrete pavements. It is important that the texturing equipment not tear or unduly roughen the pavement surface during the operation. The texture shall be uniform in appearance and approximately 1/16 inch (2 mm) in depth. Any imperfections resulting from the texturing operation shall be corrected to the satisfaction of the RPR. - **a. Brush or broom finish.** Shall be applied when the water sheen has practically disappeared. The equipment shall operate transversely across the pavement surface. - **b. Burlap drag finish.** Burlap, at least 15 ounces per square yard (555 grams per square meter), will typically produce acceptable texture. To obtain a textured surface, the transverse threads of the burlap shall be removed approximately one foot (30 cm) from the trailing edge. A heavy buildup of grout on the burlap threads produces the desired wide sweeping longitudinal striations on the pavement surface. - **c. Artificial turf finish.** Not used. - **501-4.13 Curing.** Immediately after finishing operations are completed and bleed water is gone from the surface, all exposed surfaces of the newly placed concrete shall be cured for a 7-day cure period in accordance with one of the methods below. Failure to provide sufficient cover material of whatever kind the Contractor may elect to use, or lack of water to adequately take care of both curing and other requirements, shall be cause for immediate suspension of concreting operations. The concrete shall not be left exposed for more than 1/2 hour during the curing period. When a two-saw-cut method is used to construct the contraction joint, the curing compound shall be applied to the saw-cut immediately after the initial cut has been made. The sealant reservoir shall not be sawed until after the curing period has been completed. When the one cut method is used to construct the contraction joint, the joint shall be cured with wet rope, wet rags, or wet blankets. The rags, ropes, or blankets shall be kept moist for the duration of the curing period. **a. Impervious membrane method.** Curing with liquid membrane compounds should not occur until bleed and surface moisture has evaporated. All exposed surfaces of the pavement shall be sprayed uniformly with white pigmented curing compound immediately after the finishing of the surface and before the set of the concrete has taken place. The curing compound shall not be applied during rainfall. Curing compound shall be applied by mechanical sprayers under pressure at the rate of one gallon (4 liters) to not more than 150 square feet (14 sq m). The spraying equipment shall be of the fully atomizing type equipped with a tank agitator. At the time of use, the compound shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. During application, the compound shall be stirred continuously by mechanical means. Hand spraying of odd widths or shapes and concrete surfaces exposed by the removal of forms will be
permitted. When hand spraying is approved by the RPR, a double application rate shall be used to ensure coverage. Should the film become damaged from any cause, including sawing operations, within the required curing period, the damaged portions shall be repaired immediately with additional compound or other approved means. Upon removal of side forms, the sides of the exposed slabs shall be protected immediately to provide a curing treatment equal to that provided for the surface. - b. White burlap-polyethylene sheets. Not used. - c. Water method. Not used. - **d.** Concrete protection for cold weather. Maintain the concrete at a temperature of at least 50°F (10°C) for a period of 72 hours after placing and at a temperature above freezing for the remainder of the 7-day curing period. The Contractor shall be responsible for the quality and strength of the concrete placed during cold weather; and any concrete damaged shall be removed and replaced at the Contractor's expense. - **e.** Concrete protection for hot weather. Concrete should be continuous moisture cured for the entire curing period and shall commence as soon as the surfaces are finished and continue for at least 24 hours. However, if moisture curing is not practical beyond 24 hours, the concrete surface shall be protected from drying with application of a liquid membrane-forming curing compound while the surfaces are still damp. Other curing methods may be approved by the RPR. - **501-4.14 Removing forms.** Unless otherwise specified, forms shall not be removed from freshly placed concrete until it has hardened sufficiently to permit removal without chipping, spalling, or tearing. After the forms have been removed, the sides of the slab shall be cured in accordance with paragraph 501-4.13. If honeycombed areas are evident when the forms are removed, materials, placement, and consolidation methods must be reviewed and appropriate adjustments made to assure adequate consolidation at the edges of future concrete placements. Honeycombed areas that extend into the slab less than approximately 1 inch (25 mm), shall be repaired with an approved grout, as directed by the RPR. Honeycombed areas that extend into the slab greater than a depth of 1 inch (25 mm) shall be considered as defective work and shall be removed and replaced in accordance with paragraph 501-4.19. - 501-4.15 Saw-cut grooving. Not used. - **501-4.16 Sealing joints.** The joints in the pavement shall be sealed in accordance with Item P-605. - **501-4.17 Protection of pavement.** The Contractor shall protect the pavement and its appurtenances against both public traffic and traffic caused by the Contractor's employees and agents until accepted by the RPR. This shall include watchmen to direct traffic and the erection and maintenance of warning signs, lights, pavement bridges, crossovers, and protection of unsealed joints from intrusion of foreign material, etc. Any damage to the pavement occurring prior to final acceptance shall be repaired or the pavement replaced at the Contractor's expense. Aggregates, rubble, or other similar construction materials shall not be placed on airfield pavements. Traffic shall be excluded from the new pavement by erecting and maintaining barricades and signs until the concrete is at least seven (7) days old, or for a longer period if directed by the RPR. In paving intermediate lanes between newly paved pilot lanes, operation of the hauling and paving equipment will be permitted on the new pavement after the pavement has been cured for seven (7) days, the joints are protected, the concrete has attained a minimum field cured flexural strength of 450 psi (3100 kPa), and the slab edge is protected. All new and existing pavement carrying construction traffic or equipment shall be kept clean and spillage of concrete and other materials shall be cleaned up immediately. Damaged pavements shall be removed and replaced at the Contractor's expense. Slabs shall be removed to the full depth, width, and length of the slab. - **501-4.18 Opening to construction traffic.** The pavement shall not be opened to traffic until test specimens molded and cured in accordance with ASTM C31 have attained a flexural strength of 450 pounds per square inch (3100 kPa) when tested in accordance with ASTM C78. If such tests are not conducted, the pavement shall not be opened to traffic until 14 days after the concrete was placed. Prior to opening the pavement to construction traffic, all joints shall either be sealed or protected from damage to the joint edge and intrusion of foreign materials into the joint. As a minimum, backer rod or tape may be used to protect the joints from foreign matter intrusion. - **501-4.19 Repair, removal, or replacement of slabs.** New pavement slabs that are broken or contain cracks or are otherwise defective or unacceptable as defined by acceptance criteria in paragraph 501-6.6 shall be removed and replaced or repaired, as directed by the RPR, at the Contractor's expense. Spalls along joints shall be repaired as specified. Removal of partial slabs is not permitted. Removal and replacement shall be full depth, shall be full width of the slab, and the limit of removal shall be normal to the paving lane and to each original transverse joint. The RPR will determine whether cracks extend full depth of the pavement and may require cores to be drilled on the crack to determine depth of cracking. Such cores shall be have a diameter of 2 inches (50 mm) to 4 inches (100 mm), shall be drilled by the Contractor and shall be filled by the Contractor with a well consolidated concrete mixture bonded to the walls of the hole with a bonding agent, using approved procedures. Drilling of cores and refilling holes shall be at no expense to the Owner. Repair of cracks as described in this section shall not be allowed if in the opinion of the RPR the overall condition of the pavement indicates that such repair is unlikely to achieve an acceptable and durable finished pavement. No repair of cracks shall be allowed in any panel that demonstrates segregated aggregate with an absence of coarse aggregate in the upper 1/8 inch (3 mm) of the pavement surface. - **a. Shrinkage cracks.** Shrinkage cracks which do not exceed one-third of the pavement depth shall be cleaned and either high molecular weight methacrylate (HMWM) applied; or epoxy resin (Type IV, Grade 1) pressure injected using procedures recommended by the manufacturer and approved by the RPR. Sandblasting of the surface may be required following the application of HMWM to restore skid resistance. Care shall be taken to ensure that the crack is not widened during epoxy resin injection. All epoxy resin injection shall take place in the presence of the RPR. Shrinkage cracks which exceed one-third the pavement depth shall be treated as full depth cracks in accordance with paragraphs 501-4.19b and 501-19c. - **b. Slabs with cracks through interior areas.** Interior area is defined as that area more than 6 inches (150 mm) from either adjacent original transverse joint. The full slab shall be removed and replaced at no cost to the Owner, when there are any full depth cracks, or cracks greater than one-third the pavement depth, that extend into the interior area. - **c.** Cracks close to and parallel to joints. All full-depth cracks within 6 inches (150 mm) either side of the joint and essentially parallel to the original joints, shall be treated as follows. - (1) Full depth cracks and original joint not cracked. The full-depth crack shall be treated as the new joint and the original joint filled with an epoxy resin. - i. Full-depth crack. The joint sealant reservoir for the crack shall be formed by sawing to a depth of 3/4 inches (19 mm), $\pm 1/16$ inch (2 mm), and to a width of 5/8 inch (16 mm), $\pm 1/8$ inch (3 mm). The crack shall be sawed with equipment specially designed to follow random cracks. Any equipment or procedure which causes raveling or spalling along the crack shall be modified or replaced to prevent raveling or spalling. The joint shall be sealed with sealant in accordance with P-605 or as directed by the RPR. - **ii. Original joint.** If the original joint sealant reservoir has been sawed out, the reservoir and as much of the lower saw cut as possible shall be filled with epoxy resin, Type IV, Grade 2, thoroughly tooled into the void using approved procedures. If only the original narrow saw cut has been made, it shall be cleaned and pressure injected with epoxy resin, Type IV, Grade 1, using approved procedures. Where a parallel crack goes part way across paving lane and then intersects and follows the original joint which is cracked only for the remained of the width, it shall be treated as specified above for a parallel crack, and the cracked original joint shall be prepared and sealed as originally designed. - (2) Full depth cracks and original joint cracked. If there is any place in the lane width where a parallel crack and a cracked portion of the original joint overlap, the entire slab containing the crack shall be removed and replaced. - **d. Removal and replacement of full slabs.** Make a full depth cut perpendicular to the slab surface along all edges of the slab with a concrete saw cutting any dowels or tie-bars. Remove damaged slab protecting adjacent pavement from damage. Damage to adjacent slabs may result in removal of additional slabs as directed by the RPR at the Contractor's expense. The underlying material shall be repaired, re-compacted and shaped to grade. Dowels of the size and spacing specified for other joints in similar pavement on the project shall be installed along all four (4) edges of the new slab in accordance with paragraph 501-4.10d. Placement of concrete shall be as specified for original construction. The joints around the new slab shall be prepared and sealed as specified for original construction. # e. Spalls along joints. - (1) Spalls less than one inch wide and less than the
depth of the joint sealant reservoir, shall be filled with joint sealant material. - (2) Spalls larger than one inch and/or deeper than the joint reservoir, but less than ½ the slab depth, and less than 25% of the length of the adjacent joint shall be repaired as follows: - i. Make a vertical saw cut at least one inch (25 mm) outside the spalled area and to a depth of at least 2 inches (50 mm). Saw cuts shall be straight lines forming rectangular areas surrounding the spalled area. - **ii.** Remove unsound concrete and at least 1/2 inch (12 mm) of visually sound concrete between the saw cut and the joint or crack with a light chipping hammer. - **iii.** Clean cavity with high-pressure water jets supplemented with compressed air as needed to remove all loose material. - **iv.** Apply a prime coat of epoxy resin, Type III, Grade I, to the dry, cleaned surface of all sides and bottom of the cavity, except any joint face. - v. Fill the cavity with low slump concrete or mortar or with epoxy resin concrete or mortar. - vi. An insert or other bond-breaking medium shall be used to prevent bond at all joint faces. - **vii.** A reservoir for the joint sealant shall be sawed to the dimensions required for other joints, or as required to be routed for cracks. The reservoir shall be thoroughly cleaned and sealed with the sealer specified for the joints. - (3) Spalls deeper than 1/2 of the slab depth or spalls longer than 25% of the adjacent joint require replacement of the entire slab. - **f. Diamond grinding of Concrete surfaces.** Diamond grinding shall be completed prior to pavement grooving. Diamond grinding of the hardened concrete should not be performed until the concrete is at least 14 days old and has achieved full minimum strength. Equipment that causes ravels, aggregate fractures, spalls or disturbance to the joints will not be permitted. The depth of diamond grinding shall not exceed 1/2 inch (13 mm) and all areas in which diamond grinding has been performed will be subject to the final pavement thickness tolerances specified. Diamond grinding shall be performed with a machine specifically designed for diamond grinding capable of cutting a path at least 3 feet (0.9 m) wide. The saw blades shall be 1/8-inch (3-mm) wide with sufficient number of flush cut blades that create grooves between 0.090 and 0.130 inches (2 and 3.5 mm) wide; and peaks and ridges approximately 1/32 inch (1 mm) higher than the bottom of the grinding cut. The Contractor shall determine the number and type of blades based on the hardness of the aggregate. Contractor shall demonstrate to the RPR that the grinding equipment will produce satisfactory results prior to making corrections to surfaces. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. The slurry resulting from the grinding operation shall be continuously removed and the pavement left in a clean condition. All grinding shall be at the expense of the Contractor. ## CONTRACTOR QUALITY CONTROL (CQC) - **501-5.1 Quality control program.** The Contractor shall develop a Quality Control Program in accordance with Item C-100. No partial payment will be made for materials that are subject to specific quality control requirements without an approved quality control program. - **501-5.2 Contractor Quality Control (CQC).** The Contractor shall provide or contract for testing facilities in accordance with Item C-100. The RPR shall be permitted unrestricted access to inspect the Contractor's QC facilities and witness QC activities. The RPR will advise the Contractor in writing of any noted deficiencies concerning the QC facility, equipment, supplies, or testing personnel and procedures. When the deficiencies are serious enough to be adversely affecting the test results, the incorporation of the materials into the work shall be suspended immediately and will not be permitted to resume until the deficiencies are satisfactorily corrected. - **501-5.3 Contractor QC testing.** The Contractor shall perform all QC tests necessary to control the production and construction processes applicable to this specification and as set forth in the CQCP. The testing program shall include, but not necessarily be limited to, tests for aggregate gradation, aggregate moisture content, slump, and air content. A QC Testing Plan shall be developed and approved by the RPR as part of the CQCP. The RPR may at any time, notwithstanding previous plant acceptance, reject and require the Contractor to dispose of any batch of concrete mixture which is rendered unfit for use due to contamination, segregation, or improper slump. Such rejection may be based on only visual inspection. In the event of such rejection, the Contractor may take a representative sample of the rejected material in the presence of the RPR, and if it can be demonstrated in the laboratory, in the presence of the RPR, that such material was erroneously rejected, payment will be made for the material at the contract unit price. ## a. Fine aggregate. - (1) **Gradation.** A sieve analysis shall be made at least twice daily in accordance with ASTM C136 from randomly sampled material taken from the discharge gate of storage bins or from the conveyor belt. - (2) **Moisture content.** If an electric moisture meter is used, at least two direct measurements of moisture content shall be made per week to check the calibration. If direct measurements are made in lieu of using an electric meter, two tests shall be made per day. Tests shall be made in accordance with ASTM C70 or ASTM C566. - (3) **Deleterious substances.** Fine aggregate as delivered to the mixer shall be tested for deleterious substances in fine aggregate for concrete as specified in paragraph 501-2.1b, prior to production of the control strip, and a minimum of every 30-days during production or more frequently as necessary to control deleterious substances. ## b. Coarse Aggregate. - (1) **Gradation.** A sieve analysis shall be made at least twice daily for each size of aggregate. Tests shall be made in accordance with ASTM C136 from randomly sampled material taken from the discharge gate of storage bins or from the conveyor belt. - (2) **Moisture content.** If an electric moisture meter is used, at least two direct measurements of moisture content shall be made per week to check the calibration. If direct measurements are made in lieu of using an electric meter, two tests shall be made per day. Tests shall be made in accordance with ASTM C566. - (3) **Deleterious substances.** Coarse aggregate as delivered to the mixer shall be tested for deleterious substances in coarse aggregate for concrete as specified in paragraph 501-2.1c, prior to production of the control strip, and a minimum of every 30-days during production or more frequently as necessary to control deleterious substances. - **c. Slump.** One test shall be made for each sublot. Slump tests shall be performed in accordance with ASTM C143 from material randomly sampled from material discharged from trucks at the paving site. Material samples shall be taken in accordance with ASTM C172. - **d. Air content.** One test shall be made for each sublot. Air content tests shall be performed in accordance with ASTM C231 for gravel and stone coarse aggregate and ASTM C173 for slag or other porous coarse aggregate, from material randomly sampled from trucks at the paving site. Material samples shall be taken in accordance with ASTM C172. - **e.** Unit weight and Yield. One test shall be made for each sublot. Unit weight and yield tests shall be in accordance with ASTM C138. The samples shall be taken in accordance with ASTM C172 and at the same time as the air content tests. - **f. Temperatures.** Temperatures shall be checked at least four times per lot at the job site in accordance with ASTM C1064. ## g. Smoothness for Contractor Quality Control. The Contractor shall perform smoothness testing in transverse and longitudinal directions daily to verify that the construction processes are producing pavement with variances less than ¼ inch in 12 feet, identifying areas that may pond water which could lead to hydroplaning of aircraft. If the smoothness criteria is not met, appropriate changes and corrections to the construction process shall be made by the Contractor before construction continues The Contractor may use a 12-foot (3.7 m) "straightedge, a rolling inclinometer meeting the requirements of ASTM E2133 or rolling external reference device that can simulate a 12-foot (3.7m) straightedge approved by the RPR. Straight-edge testing shall start with one-half the length of the straightedge at the edge of pavement section being tested and then moved ahead one-half the length of the straightedge for each successive measurement. Testing shall be continuous across all joints. The surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between the two high points. If the rolling inclinometer or external reference device is used, the data may be evaluated using either the FAA profile program, ProFAA, or FHWA profile program ProVal, using the 12-foot straightedge simulation function. Smoothness readings shall not be made across grade changes or cross slope transitions. The transition between new and existing pavement shall be evaluated separately for conformance with the plans. - (1) **Transverse measurements.** Transverse measurements shall be taken for each day's production placed. Transverse measurements shall be taken perpendicular to the pavement centerline each 50 feet (15 m) or more often as determined by the RPR. The joint between lanes shall be tested separately to facilitate smoothness between lanes. - (2) Longitudinal measurements. Longitudinal measurements shall be taken
for each day's production placed. Longitudinal tests shall be parallel to the centerline of paving; at the center of paving lanes when widths of paving lanes are less than 20 feet (6 m); and at the third points of paving lanes when widths of paving lanes are 20 ft (6 m) or greater. Deviations on the final surface course in either the transverse or longitudinal direction that will trap water greater than 1/4 inch (6 mm) shall be corrected with diamond grinding per paragraph 501-4.19f or by removing and replacing the surface course to full depth. Grinding shall be tapered in all directions to provide smooth transitions to areas not requiring grinding. All areas in which diamond grinding has been performed shall be subject to the final pavement thickness tolerances specified in paragraph 501-6.6. Control charts shall be kept to show area of each day's placement and the percentage of corrective grinding required. Corrections to production and placement shall be initiated when corrective grinding is required. If the Contractor's machines and/or methods produce significant areas that need corrective actions in excess of 10 percent of a day's production, production shall be stopped until corrective measures are implemented by the Contractor. **h. Grade.** Grade will be evaluated prior to and after placement of the concrete surface. Measurements will be taken at appropriate gradelines (as a minimum at center and edges of paving lane) and longitudinal spacing as shown on cross-sections and plans. The final surface of the pavement will not vary from the gradeline elevations and cross-sections shown on the plans by more than 1/2 inch (12 mm) vertically and 0.1 feet (30 mm) laterally. The documentation will be provided by the Contractor to the RPR by the end of the following working day. Areas with humps or depression that that exceed grade or smoothness and that retain water on the surface must be ground off provided the course thickness after grinding is not more than 1/2 inch (12 mm) less than the thickness specified on the plans. If these areas cannot be corrected with grinding then the slabs that are retaining water must be removed and replaced in accordance with paragraph 501-4.19d. Grinding shall be in accordance with paragraph 501-4.19f. All corrections will be at the Contractors expense. **501-5.4 Control charts.** The Contractor shall maintain linear control charts for fine and coarse aggregate gradation, slump, and air content. The Contractor shall also maintain a control chart plotting the coarseness factor/workability factor from the combined gradations in accordance with paragraph 501-2.1d. Control charts shall be posted in a location satisfactory to the RPR and shall be kept up to date at all times. As a minimum, the control charts shall identify the project number, the contract item number, the test number, each test parameter, the Action and suspension Limits, or Specification limits, applicable to each test parameter, and the Contractor's test results. The Contractor shall use the control charts as part of a process control system for identifying potential problems and assignable causes before they occur. If the Contractor's projected data during production indicates a potential problem and the Contractor is not taking satisfactory corrective action, the RPR may halt production or acceptance of the material. - **a. Fine and coarse aggregate gradation.** The Contractor shall record the running average of the last five gradation tests for each control sieve on linear control charts. Superimposed on the control charts shall be the action and suspension limits. Gradation tests shall be performed by the Contractor per ASTM C136. The Contractor shall take at least two samples per lot to check the final gradation. Sampling shall be per ASTM D75 from the flowing aggregate stream or conveyor belt. - **b. Slump and air content.** The Contractor shall maintain linear control charts both for individual measurements and range (that is, difference between highest and lowest measurements) for slump and air content in accordance with the following Action and Suspension Limits. - **c. Combined gradation.** The Contractor shall maintain a control chart plotting the coarseness factor and workability factor on a chart in accordance with paragraph 501-2.1d. ### Control Chart Limits¹ | Control Parameter | Individual Measurements | | | |-------------------------|-------------------------|------------------|--| | Control Parameter | Action Limit | Suspension Limit | | | Gradation ² | *3 | *3 | | | Coarseness Factor (CF) | ±3.5 | ±5 | | | Workability Factor (WF) | ±2 | ±3 | | | Slump | +0.5 to -1 inch | +1 to -1.5 inch | | | | (+13 to -25 mm) | (+25 to -38 mm) | | | Air Content | ±1.5% | ±2.0% | | ¹ Control charts shall developed and maintained for each control parameter indicated. - **501-5.5** Corrective action at Suspension Limit. The CQCP shall indicate that appropriate action shall be taken when the process is believed to be out of control. The CQCP shall detail what action will be taken to bring the process into control and shall contain sets of rules to gauge when a process is out of control. As a minimum, a process shall be deemed out of control and corrective action taken if any one of the following conditions exists. - **a.** Fine and coarse aggregate gradation. When two consecutive averages of five tests are outside of the suspension limits, immediate steps, including a halt to production, shall be taken to correct the grading. - **b.** Coarseness and Workability factor. When the CF or WF reaches the applicable suspension limits, the Contractor, immediate steps, including a halt to production, shall be taken to correct the CF and WF. - c. Fine and coarse aggregate moisture content. Whenever the moisture content of the fine or coarse aggregate changes by more than 0.5%, the scale settings for the aggregate batcher and water batcher shall be adjusted. - d. Slump. The Contractor shall halt production and make appropriate adjustments whenever: ² Control charts shall be developed and maintained for each sieve size. ³ Action and suspension limits shall be determined by the Contractor. - (1) one point falls outside the Suspension Limit line for individual measurements OR - (2) two points in a row fall outside the Action Limit line for individual measurements. - d. Air content. The Contractor shall halt production and adjust the amount of air-entraining admixture whenever: - (1) one point falls outside the Suspension Limit line for individual measurements OR - (2) two points in a row fall outside the Action Limit line for individual measurements. ### MATERIAL ACCEPTANCE **501-6.1 Quality Assurance (QA) Acceptance sampling and testing.** All acceptance sampling and testing necessary to determine conformance with the requirements specified in this section, with the exception of coring for thickness determination, will be performed by the RPR. The Contractor shall provide adequate facilities for the initial curing of beams. The Contractor shall bear the cost of providing initial curing facilities and coring and filling operations, per paragraph 501-6.5b(1). The samples will be transported while in the molds. The curing, except for the initial cure period, will be accomplished using the immersion in saturated lime water method. During the 24 hours after molding, the temperature immediately adjacent to the specimens must be maintained in the range of 60° to 80°F (16° to 27°C), and loss of moisture from the specimens must be prevented. The specimens may be stored in tightly constructed wooden boxes, damp sand pits, temporary buildings at construction sites, under wet burlap in favorable weather, or in heavyweight closed plastic bags, or using other suitable methods, provided the temperature and moisture loss requirements are met. - **501-6.2 Quality Assurance (QA) testing laboratory.** Quality assurance testing organizations performing these acceptance tests will be accredited in accordance with ASTM C1077. The quality assurance laboratory accreditation must be current and listed on the accrediting authority's website. All test methods required for acceptance sampling and testing must be listed on the lab accreditation. A copy of the laboratory's current accreditation and accredited test methods will be submitted to the RPR prior to start of construction. - **501-6.3** Lot size. Concrete will be accepted for strength and thickness on a lot basis. A lot will consist of a day's production not to exceed 2,000 cubic yards (1530 cubic meters) or 3,700 square yards, whichever is less. Each lot will be divided into approximately equal sublots with individual sublots between 400 to 600 cubic yards. Where three sublots are produced, they will constitute a lot. Where one or two sublots are produced, they will be incorporated into the previous or next lot. Where more than one plant is simultaneously producing concrete for the job, the lot sizes will apply separately for each plant. - **501-6.4 Partial lots.** When operational conditions cause a lot to be terminated before the specified number of tests have been made for the lot or for overages or minor placements to be considered as partial lots, the following procedure will be used to adjust the lot size and the number of tests for the lot. Where three sublots have been produced, they will constitute a lot. Where one or two sublots have been produced, they will be incorporated into the next lot or the previous lot and the total number of sublots will be used in the acceptance criteria calculation, that is, n=5 or n=6. ## 501-6.5 Acceptance Sampling and Testing. a. Strength. - (1) **Sampling.** One sample will be taken for each sublot from the concrete delivered to the job site. Sampling locations will be determined by the RPR in accordance with random sampling procedures contained in ASTM D3665. The concrete will be sampled in accordance with ASTM C172. - (2) **Test Specimens.** The RPR
will be responsible for the casting, initial curing, transportation, and curing of specimens in accordance with ASTM C31. Two (2) specimens will be made from each sample and slump, air content, unit weight, and temperature tests will be conducted for each set of strength specimens. Within 24 to 48 hours, the samples will be transported from the field to the laboratory while in the molds. Samples will be cured in saturated lime water. The strength of each specimen will be determined in accordance with ASTM C78. The strength for each sublot will be computed by averaging the results of the two test specimens representing that sublot. (3) Acceptance. Acceptance of pavement for strength will be determined by the RPR in accordance with paragraph 501-6.6b(1). All individual strength tests within a lot will be checked for outliers in accordance with ASTM E178, at a significance level of 5%. Outliers will be discarded and the remaining test values will be used to determine acceptance in accordance with paragraph 501-6.5b. ### b. Pavement thickness. (1) **Sampling.** One core will be taken by the Contractor for each sublot in the presence of the RPR. Sampling locations will be determined by the RPR in accordance with random sampling procedures contained in ASTM D3665. Areas, such as thickened edges, with planned variable thickness, will be excluded from sample locations. Cores shall be a minimum 4 inch (100 mm) in diameter neatly cut with a core drill. The Contractor will furnish all tools, labor, and materials for cutting samples and filling the cored hole. Core holes will be filled by the Contractor with a non-shrink grout approved by the RPR within one day after sampling. - (2) **Testing.** The thickness of the cores will be determined by the RPR by the average caliper measurement in accordance with ASTM C174. Each core shall be photographed and the photograph included with the test report. - (3) Acceptance. Acceptance of pavement for thickness will be determined by the RPR in accordance with paragraph 501-6.6. ## 501-6.6 Acceptance criteria. - **a. General.** Acceptance will be based on the following characteristics of the completed pavement discussed in paragraph 501-6.5b: - (1) Strength - (2) Thickness - (3) Grade - (4) Profilograph smoothness - (5) Adjustments for repairs Acceptance for strength, thickness, and grade, will be based on the criteria contained in accordance with paragraph 501-6.6b(1), 501-6.6b(2), and 501-6.6b(3), respectively. Acceptance for profilograph smoothness will be based on the criteria contained in paragraph 501-6.6b(4). Production quality must achieve 90 PWL or higher to receive full payment. Strength and thickness will be evaluated for acceptance on a lot basis using the method of estimating PWL. Production quality must achieve 90 PWL or higher to receive full pavement. The PWL will be determined in accordance with procedures specified in Item C-110. The lower specification tolerance limit (L) for strength and thickness will be: ## **Lower Specification Tolerance Limit (L)** | Strength | 0.93 × strength specified in paragraph 501-3.3 | |-----------|--| | Thickness | Lot Plan Thickness in inches, - 0.50 in | ## b. Acceptance criteria. - (1) **Strength.** If the PWL of the lot equals or exceeds 90%, the lot will be acceptable. Acceptance and payment for the lot will be determined in accordance with paragraph 501-8.1. - (2) **Thickness.** If the PWL of the lot equals or exceeds 90%, the lot will be acceptable. Acceptance and payment for the lot will be determined in accordance with paragraph 501-8.1. - (3) **Grade.** The final finished surface of the pavement of the completed project will not vary from the gradeline elevations and cross-sections shown on the plans by more than 1/2 inch (12 mm) vertically or 0.1 feet (30 mm) laterally. The documentation, stamped and signed by a licensed surveyor shall be in accordance with paragraph 501-5.3h. Payment for sublots that do not meet grade for over 25% of the sublot shall reduced by 5% and not be more than 95%. - **(4) Profilograph roughness for QA Acceptance.** The final profilograph shall be the full length of the project to facilitate testing of roughness between lots. The Contractor, in the presence of the RPR shall perform a profilograph roughness test on the completed project with a profilograph meeting the requirements of ASTM E1274 or a Class I inertial profiler meeting ASTM E950. Data and results shall be provided within 48 hrs of profilograph roughness tests. The pavement shall have an average profile index less than 15 inches per mile per 1/10 mile. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate "must grind" bumps and the Profile Index for the pavement using a 0.2-inch (5 mm) blanking band. The bump template must span one inch (25 mm) with an offset of 0.4 inches (10 mm). The profilograph must be calibrated prior to use and operated by a factory or State DOT approved, trained operator. Profilograms shall be recorded on a longitudinal scale of one inch (25 mm) equals 25 feet (7.5 m) and a vertical scale of one inch (25 mm) equals one inch (25 mm). Profilograph shall be performed one foot right and left of project centerline and 15 feet (4.5 m) right and left of project centerline. Any areas that indicate "must grind" shall be corrected with diamond grinding per paragraph 501-4.19f or by removing and replacing full depth of surface course. as directed by the RPR. Where corrections are necessary, a second profilograph run shall be performed to verify that the corrections produced an average profile index of 15 inches per mile per 1/10 mile or less. - (5) Adjustments for repair. Sublots with spall repairs, crack repairs, or partial panel replacement, will be limited to no more than 95% payment. - **(6) Adjustment for grinding.** For sublots with grinding over 25% of a sublot, payment will be reduced 5%. ### METHOD OF MEASUREMENT **501-7.1** Concrete pavement shall be measured by the number of square yards (square meters) of reinforced pavement as specified in-place, completed and accepted. ### **BASIS OF PAYMENT** **501-8.1 Payment.** Payment for concrete pavement meeting all acceptance criteria as specified in paragraph 501-6.6. Acceptance Criteria shall be based on results of strength, smoothness, and thickness tests. Payment for acceptable lots of concrete pavement shall be adjusted in accordance with paragraph 501-8.1a for strength and thickness; 501-8.1b for repairs; 501-8.1c for grinding; and 501-8.1d for smoothness, subject to the limitation that: The total project payment for concrete pavement shall not exceed 100 percent of the product of the contract unit price and the total number of square yards (square meters) of concrete pavement used in the accepted work (See Note 1 under the Price Adjustment Schedule table below). Payment shall be full compensation for all labor, materials, tools, equipment, and incidentals required to complete the work as specified herein and on the drawings. **a. Basis of adjusted payment.** The pay factor for each individual lot shall be calculated in accordance with the Price Adjustment Schedule table below. A pay factor shall be calculated for both strength and thickness. The lot pay factor shall be the higher of the two values when calculations for both strength and thickness are 100% or higher. The lot pay factor shall be the product of the two values when only one of the calculations for either strength or thickness is 100% or higher. The lot pay factor shall be the lower of the two values when calculations for both strength and thickness are less than 100%. | Percentage of Materials Within Specification
Limits
(PWL) | Lot Pay Factor
(Percent of Contract Unit Price) | |---|--| | 96 – 100 | 106 | | 90 – 95 | PWL + 10 | | 75 – 90 | 0.5 PWL + 55 | | 55 – 74 | 1.4 PWL – 12 | | Below 55 | Reject ² | Price Adjustment Schedule¹ For each lot accepted, the adjusted contract unit price shall be the product of the lot pay factor for the lot and the contract unit price. Payment shall be subject to the total project payment limitation specified in paragraph 501-8.1. Payment in excess of 100% for accepted lots of concrete pavement shall be used to offset payment for accepted lots of concrete pavement that achieve a lot pay factor less than 100%; except for rejected lots which remain in place and/or sublots with adjustments for repairs. - **b.** Adjusted payment for repairs. The PWL lot pay factor shall be reduced by 5% and be no higher than 95% for sublots which contain repairs in accordance with paragraph 501-4.19 on more than 20% of the slabs within the sublot. Payment factors greater than 100 percent for the strength and thickness cannot be used to offset adjustments for repairs. - **c. Adjusted payment for grinding.** The PWL lot pay factor shall be reduced by 5% and be no higher than 95% for sublots with grinding over 25% of a sublot. Although it is theoretically possible to achieve a pay factor of 106% for each lot, actual payment in excess of 100% shall be subject to the total project payment limitation specified in paragraph 501-8.1. ² The lot shall be removed and replaced unless, after receipt of FAA concurrence, the Owner and Contractor agree in writing that the lot will remain; the lot paid at 50% of the contract unit price; and the total project payment limitation reduced by the amount withheld for that lot. **d. Profilograph Roughness.** The Contractor will receive full payment when the profilograph average profile index is in accordance with paragraph 501-6.6b(4). When the final average profile index for the entire length of payment does not exceed 15 inches per mile per 1/10 mile, payment will be made at the contract unit price for the completed payement. # e. Payment.
Payment shall be made under: | Item P-501-8.1a | Cement Concrete Pavement, 19-Inch - per square yard | |-----------------|---| | Item P-501-8.1b | Cement Concrete Pavement, 6-Inch - per square yard | # **REFERENCES** The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. # ASTM International (ASTM) | ASTM A184 | Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement | |------------|---| | ASTM A615 | Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement | | ASTM A704 | Standard Specification for Welded Steel Plain Bar or Rod Mats for Concrete Reinforcement | | ASTM A706 | Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement | | ASTM A775 | Standard Specification for Epoxy-Coated Steel Reinforcing Bars | | ASTM A884 | Standard Specification for Epoxy-Coated Steel Wire and Welded Wire Reinforcement | | ASTM A934 | Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars | | ASTM A996 | Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement | | ASTM A1035 | Standard Specification for Deformed and Plain, Low-Carbon,
Chromium, Steel Bars for Concrete Reinforcement | | ASTM A1064 | Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete | | ASTM A1078 | Standard Specification for Epoxy-Coated Steel Dowels for Concrete Pavement | | ASTM C29 | Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate | | ASTM C31 | Standard Practice for Making and Curing Concrete Test Specimens in the Field | | ASTM C33 | Standard Specification for Concrete Aggregates | | ASTM C39 | Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens | | ASTM C70 | Standard Test Method for Surface Moisture in Fine Aggregate | |-----------|--| | ASTM C78 | Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) | | ASTM C88 | Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate | | ASTM C94 | Standard Specification for Ready-Mixed Concrete | | ASTM C114 | Standard Test Methods for Chemical Analysis of Hydraulic Cement | | ASTM C117 | Standard Test Method for Materials Finer than 75- μ m (No. 200) Sieve in Mineral Aggregates by Washing | | ASTM C123 | Standard Test Method for Lightweight Particles in Aggregate | | ASTM C136 | Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates | | ASTM C131 | Standard Test Method for Resistance to Degradation of Small-Size
Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine | | ASTM C136 | Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates | | ASTM C138 | Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete | | ASTM C142 | Standard Test Method for Clay Lumps and Friable Particles in Aggregates | | ASTM C143 | Standard Test Method for Slump of Hydraulic-Cement Concrete | | ASTM C150 | Standard Specification for Portland Cement | | ASTM C171 | Standard Specification for Sheet Materials for Curing Concrete | | ASTM C172 | Standard Practice for Sampling Freshly Mixed Concrete | | ASTM C173 | Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method | | ASTM C174 | Standard Test Method for Measuring Thickness of Concrete Elements
Using Drilled Concrete Cores | | ASTM C227 | Standard Test Method for Potential Alkali Reactivity of Cement-
Aggregate Combinations (Mortar-Bar Method) | | ASTM C231 | Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method | | ASTM C260 | Standard Specification for Air-Entraining Admixtures for Concrete | | ASTM C295 | Standard Guide for Petrographic Examination of Aggregates for Concrete | | ASTM C309 | Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete | | ASTM C311 | Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland Cement Concrete | | ASTM C494 | Standard Specification for Chemical Admixtures for Concrete | | ASTM C566 | Standard Test Method for Total Evaporable Moisture Content of
Aggregates by Drying | |------------|---| | ASTM C595 | Standard Specification for Blended Hydraulic Cements | | ASTM C618 | Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete | | ASTM C642 | Standard Test Method for Density, Absorption, and Voids in Hardened Concrete | | ASTM C666 | Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing | | ASTM C685 | Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing | | ASTM C881 | Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete | | ASTM C989 | Standard Specification for Slag Cement for Use in Concrete and Mortars | | ASTM C1017 | Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete | | ASTM C1064 | Test Method for Temperature of Freshly Mixed Hydraulic-Cement
Concrete | | ASTM C1077 | Standard Practice for Agencies Testing Concrete and Concrete
Aggregates for Use in Construction and Criteria for Testing Agency
Evaluation | | ASTM C1157 | Standard Performance Specification for Hydraulic Cement | | ASTM C1260 | Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) | | ASTM C1365 | Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis | | ASTM C1567 | Standard Test Method for Determining the Potential Alkali-Silica
Reactivity of Combinations of Cementitious Materials and Aggregate
(Accelerated Mortar-Bar Method) | | ASTM C1602 | Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete | | ASTM D75 | Standard Practice for Sampling Aggregates | | ASTM D1751 | Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types) | | ASTM D1752 | Standard Specification for Preformed Sponge Rubber and Cork and
Recycled PVC Expansion Joint Fillers for Concrete Paving and
Structural Construction | | ASTM D2419 | Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate | ASTM D3665 Standard Practice for Random Sampling of Construction Materials ASTM D4791 Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate ASTM E178 Standard Practice for Dealing with Outlying Observations ASTM E1274 Standard Test Method for Measuring Pavement Roughness Using a Profilograph ASTM E2133 Standard Test Method for Using a Rolling Inclinometer to Measure Longitudinal and Transverse Profiles of a Traveled Surface American Concrete Institute (ACI) ACI 305R Guide to Hot Weather Concreting ACI 306R Guide to Cold Weather Concreting ACI 309R Guide for Consolidation of Concrete Advisory Circulars (AC) AC 150/5320-6 Airport Pavement Design and Evaluation Federal Highway Administration (FHWA) HIPERPAV 3, version 3.2 Portland Concrete Association (PCA) PCA Design and Control of Concrete Mixtures, 16th Edition U.S. Army Corps of Engineers (USACE) Concrete Research Division (CRD) CRD C662 Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials, Lithium Nitrate Admixture and Aggregate (Accelerated Mortar-Bar Method) United States Air Force Engineering Technical Letter (ETL) ETL 97-5 Proportioning Concrete Mixtures with Graded Aggregates for Rigid Airfield Pavements ### **END ITEM P-501** ### **Item P-610 Concrete for Miscellaneous Structures** ### DESCRIPTION **610-1.1** This item shall consist of concrete and reinforcement, as shown on the plans, prepared and constructed in accordance with these specifications. This specification shall be used for all concrete other than airfield pavement which are cast-in-place. ### **MATERIALS** **610-2.1 General.** Only approved materials, conforming to the requirements of these specifications, shall be used in the work. Materials may be subject to inspection and tests at any time during their preparation or use. The source of all materials shall be approved by the Resident Project Representative (RPR) before delivery or use in the work. Representative preliminary samples of the materials shall be submitted by the Contractor, when required, for examination and test. Materials shall be stored and handled to ensure preservation of their quality and fitness for use and shall be located to facilitate prompt inspection. All equipment for handling and transporting materials and concrete must be clean before any material or concrete is placed in them. The use of pit-run aggregates shall not be permitted unless the pit-run aggregate has been screened and washed, and all fine and coarse aggregates stored separately and kept clean. The mixing of different aggregates from different sources in one storage stockpile or alternating batches of different aggregates shall not be permitted. **a. Reactivity.** Fine aggregate and coarse aggregates to be used in all concrete shall have been tested separately within six months of the project in accordance with ASTM C1260. Test results shall be
submitted to the RPR. The aggregate shall be considered innocuous if the expansion of test specimens, tested in accordance with ASTM C1260, does not exceed 0.08% at 14 days (16 days from casting). If the expansion either or both test specimen is greater than 0.08% at 14 days, but less than 0.20%, a minimum of 25% of Type F fly ash, or between 40% and 55% of slag cement shall be used in the concrete mix. If the expansion is greater than 0.20%, the aggregates shall not be used, and test results for other aggregates must be submitted for evaluation; or aggregates that meet P-501 reactivity test requirements may be utilized. **610-2.2 Coarse aggregate.** The coarse aggregate for concrete shall meet the requirements of ASTM C33 and the requirements of Table 4, Class Designation 5S; and the grading requirements shown below, as required for the project. ## **Coarse Aggregate Grading Requirements** | Maximum Aggregate Size | ASTM C33, Table 3 Grading
Requirements (Size No.) | |--|--| | 1 1/2 inch (37.5 mm) | 467 or
4 and 67 | | 1 inch (25 mm) | 57 | | ³ / ₄ inch (19 mm) | 67 | | ½ inch (12.5 mm) | 7 | - 610-2.2.1 Coarse Aggregate susceptibility to durability (D) cracking. Not used. - **610-2.3 Fine aggregate.** The fine aggregate for concrete shall meet all fine aggregate requirements of ASTM C33. - **610-2.4 Cement.** Cement shall conform to the requirements of ASTM C150 Type 1. ### 610-2.5 Cementitious materials. - **a. Fly ash.** Fly ash shall meet the requirements of ASTM C618, with the exception of loss of ignition, where the maximum shall be less than 6%. Fly ash shall have a Calcium Oxide (CaO) content of less than 15% and a total available alkali content less than 3% per ASTM C311. Fly ash produced in furnace operations using liming materials or soda ash (sodium carbonate) as an additive shall not be acceptable. The Contractor shall furnish the previous three most recent, consecutive ASTM C618 reports for each source of fly ash proposed in the concrete mix, and shall furnish each additional report as they become available during the project. The reports can be used for acceptance or the material may be tested independently by the RPR. - **b. Slag cement (ground granulated blast furnace (GGBF)).** Slag cement shall conform to ASTM C989, Grade 100 or Grade 120. Slag cement shall be used only at a rate between 25% and 55% of the total cementitious material by mass. - **610-2.6 Water.** Water used in mixing or curing shall be from potable water sources. Other sources shall be tested in accordance with ASTM C1602 prior to use. - **610-2.7 Admixtures.** The Contractor shall submit certificates indicating that the material to be furnished meets all of the requirements indicated below. In addition, the RPR may require the Contractor to submit complete test data from an approved laboratory showing that the material to be furnished meets all of the requirements of the cited specifications. Subsequent tests may be made of samples taken by the RPR from the supply of the material being furnished or proposed for use on the work to determine whether the admixture is uniform in quality with that approved. - **a. Air-entraining admixtures**. Air-entraining admixtures shall meet the requirements of ASTM C260 and shall consistently entrain the air content in the specified ranges under field conditions. The air-entrainment agent and any water reducer admixture shall be compatible. - **b. Water-reducing admixtures**. Water-reducing admixture shall meet the requirements of ASTM C494, Type A, B, or D. ASTM C494, Type F and G high range water reducing admixtures and ASTM C1017 flowable admixtures shall not be used. - **c. Other chemical admixtures**. The use of set retarding, and set-accelerating admixtures shall be approved by the RPR. Retarding shall meet the requirements of ASTM C494, Type A, B, or D and set- accelerating shall meet the requirements of ASTM C494, Type C. Calcium chloride and admixtures containing calcium chloride shall not be used. - **610-2.8 Premolded joint material.** Premolded joint material for expansion joints shall meet the requirements of ASTM D1751. - **610-2.9 Joint filler.** The filler for joints shall meet the requirements of Item P-605, unless otherwise specified. - **610-2.10 Steel reinforcement.** Reinforcing shall consist of welded steel wire fabric conforming to the requirements of ASTM A1064. - **610-2.11 Materials for curing concrete.** Curing materials shall conform to one of the following specifications. # **Materials for Curing** | Waterproof paper | ASTM C171 | |---|-----------| | Clear or white Polyethylene Sheeting | ASTM C171 | | White-pigmented Liquid Membrane-Forming Compound, Type 2, Class B | ASTM C309 | ## CONSTRUCTION METHODS - **610-3.1 General.** The Contractor shall furnish all labor, materials, and services necessary for, and incidental to, the completion of all work as shown on the drawings and specified here. All machinery and equipment used by the Contractor on the work, shall be of sufficient size to meet the requirements of the work. All work shall be subject to the inspection and approval of the RPR. - **610-3.2 Concrete Mixture.** The concrete shall develop a compressive strength of 4000 psi in 28 days as determined by test cylinders made in accordance with ASTM C31 and tested in accordance with ASTM C39. The concrete shall contain not less than 470 pounds of cementitious material per cubic yard (280 kg per cubic meter). The water cementitious ratio shall not exceed 0.45 by weight. The air content of the concrete shall be 5% +/- 1.2% as determined by ASTM C231 and shall have a slump of not more than 4 inches (100 mm) as determined by ASTM C143. - **610-3.3 Mixing.** Concrete may be mixed at the construction site, at a central point, or wholly or in part in truck mixers. The concrete shall be mixed and delivered in accordance with the requirements of ASTM C94 or ASTM C685. The concrete shall be mixed only in quantities required for immediate use. Concrete shall not be mixed while the air temperature is below 40°F (4°C) without the RPRs approval. If approval is granted for mixing under such conditions, aggregates or water, or both, shall be heated and the concrete shall be placed at a temperature not less than 50°F (10°C) nor more than 100°F (38°C). The Contractor shall be held responsible for any defective work, resulting from freezing or injury in any manner during placing and curing, and shall replace such work at his expense. Retempering of concrete by adding water or any other material is not permitted. The rate of delivery of concrete to the job shall be sufficient to allow uninterrupted placement of the concrete. **610-3.4 Forms**. Concrete shall not be placed until all the forms and reinforcements have been inspected and approved by the RPR. Forms shall be of suitable material and shall be of the type, size, shape, quality, and strength to build the structure as shown on the plans. The forms shall be true to line and grade and shall be mortar-tight and sufficiently rigid to prevent displacement and sagging between supports. The surfaces of forms shall be smooth and free from irregularities, dents, sags, and holes. The Contractor shall be responsible for their adequacy. The internal form ties shall be arranged so no metal will show in the concrete surface or discolor the surface when exposed to weathering when the forms are removed. All forms shall be wetted with water or with a non-staining mineral oil, which shall be applied immediately before the concrete is placed. Forms shall be constructed so they can be removed without injuring the concrete or concrete surface. - **610-3.5 Placing reinforcement.** All reinforcement shall be accurately placed, as shown on the plans, and shall be firmly held in position during concrete placement. Bars shall be fastened together at intersections. The reinforcement shall be supported by approved metal chairs. Shop drawings, lists, and bending details shall be supplied by the Contractor when required. - **610-3.6 Embedded items.** Before placing concrete, all embedded items shall be firmly and securely fastened in place as indicated. All embedded items shall be clean and free from coating, rust, scale, oil, or any foreign matter. The concrete shall be spaded and consolidated around and against embedded items. The embedding of wood shall not be allowed. - **610-3.7 Concrete Consistency**. The Contractor shall monitor the consistency of the concrete delivered to the project site; collect each batch ticket; check temperature; and perform slump tests on each truck at the project site in accordance with ASTM C143. - **610-3.8 Placing concrete.** All concrete shall be placed during daylight hours, unless otherwise approved. The concrete shall not be placed until the depth and condition of foundations, the adequacy of forms and falsework, and the placing of the steel reinforcing have been approved by the RPR. Concrete shall be placed as soon as practical after mixing, but in no case later than one (1) hour after water has been added to the mix. The method and manner of placing shall avoid segregation and displacement of the reinforcement. Troughs, pipes, and chutes shall be used as an aid in placing concrete when necessary. The concrete shall not be dropped from a height of more than 5 feet (1.5 m). Concrete shall be deposited as nearly as practical in its final position to avoid segregation due to rehandling or flowing. Do not subject concrete to procedures which cause segregation. Concrete shall be placed on clean, damp surfaces, free from running water, or on a properly consolidated soil foundation. - **610-3.9 Vibration.** Vibration shall follow the guidelines in American Concrete Institute (ACI) Committee 309R, Guide for Consolidation of Concrete. - **610-3.10 Joints.**
Joints shall be constructed as indicated on the plans. - **610-3.11 Finishing.** All exposed concrete surfaces shall be true, smooth, and free from open or rough areas, depressions, or projections. All concrete horizontal plane surfaces shall be brought flush to the proper elevation with the finished top surface struck-off with a straightedge and floated. - **610-3.12** Curing and protection. All concrete shall be properly cured in accordance with the recommendations in American Concrete Institute (ACI) 308R, Guide to External Curing of Concrete. The concrete shall be protected from damage until project acceptance. - **610-3.13 Cold weather placing.** When concrete is placed at temperatures below 40°F (4°C), follow the cold weather concreting recommendations found in ACI 306R, Cold Weather Concreting. - **610-3.14 Hot weather placing.** When concrete is placed in hot weather greater than 85°F (30 °C), follow the hot weather concreting recommendations found in ACI 305R, Hot Weather Concreting. ## **QUALITY ASSURANCE (QA)** **610-4.1 Quality Assurance sampling and testing**. Concrete for each day's placement will be accepted on the basis of the compressive strength specified in paragraph 610-3.2. The RPR will sample the concrete in accordance with ASTM C172; test the slump in accordance with ASTM C143; [test air content in accordance with ASTM C231;] make and cure compressive strength specimens in accordance with ASTM C31; and test in accordance with ASTM C39. The QA testing agency will meet the requirements of ASTM C1077. The Contractor shall provide adequate facilities for the initial curing of cylinders. **610-4.2 Defective work.** Any defective work that cannot be satisfactorily repaired as determined by the RPR, shall be removed and replaced at the Contractor's expense. Defective work includes, but is not limited to, uneven dimensions, honeycombing and other voids on the surface or edges of the concrete. ### METHOD OF MEASUREMENT **610-5.1** Concrete shall be considered incidental and no separate measurement shall be made of concrete complete in place and accepted. ## **BASIS OF PAYMENT** **610-6.1** No separate payment shall be made for this item. This price shall be full compensation for furnishing all materials including reinforcement and embedded items and for all preparation, delivery, installation, and curing of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item. ### REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. ## ASTM International (ASTM) | ASTM A184 | Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement | |------------|--| | ASTM A615 | Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement | | ASTM A704 | Standard Specification for Welded Steel Plain Bar or Rod Mats for Concrete Reinforcement | | ASTM A706 | Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement | | ASTM A775 | Standard Specification for Epoxy-Coated Steel Reinforcing Bars | | ASTM A884 | Standard Specification for Epoxy-Coated Steel Wire and Welded Wire Reinforcement | | ASTM A934 | Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars | | ASTM A1064 | Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete | | ASTM C31 | Standard Practice for Making and Curing Concrete Test Specimens in the Field | |------------|--| | ASTM C33 | Standard Specification for Concrete Aggregates | | ASTM C39 | Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens | | ASTM C94 | Standard Specification for Ready-Mixed Concrete | | ASTM C136 | Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates | | ASTM C114 | Standard Test Methods for Chemical Analysis of Hydraulic Cement | | ASTM C136 | Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates | | ASTM C143 | Standard Test Method for Slump of Hydraulic-Cement Concrete | | ASTM C150 | Standard Specification for Portland Cement | | ASTM C171 | Standard Specification for Sheet Materials for Curing Concrete | | ASTM C172 | Standard Practice for Sampling Freshly Mixed Concrete | | ASTM C231 | Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method | | ASTM C260 | Standard Specification for Air-Entraining Admixtures for Concrete | | ASTM C309 | Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete | | ASTM C311 | Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete | | ASTM C494 | Standard Specification for Chemical Admixtures for Concrete | | ASTM C618 | Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete | | ASTM C666 | Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing | | ASTM C685 | Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing | | ASTM C989 | Standard Specification for Slag Cement for Use in Concrete and Mortars | | ASTM C1017 | Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete | | ASTM C1077 | Standard Practice for Agencies Testing Concrete and Concrete
Aggregates for Use in Construction and Criteria for Testing Agency
Evaluation | | ASTM C1157 | Standard Performance Specification for Hydraulic Cement | | ASTM C1260 | Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) | ASTM C1365 Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder **Diffraction Analysis** ASTM C1602 Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Asphalt Types) ASTM D1752 Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction # American Concrete Institute (ACI) ACI 305R Hot Weather Concreting ACI 306R Cold Weather Concreting ACI 308R Guide to External Curing of Concrete ACI 309R Guide for Consolidation of Concrete ## **END OF ITEM P-610** # ENVIRONMENTAL OVERSIGHT & TESTING DURING CONSTRUCTION The Project requires environmental oversight, testing, and management of geotechnically unsuitable soils ("Spoils") removed for the taxiway construction. MKE intends to transport the Spoils to a fill site owned by Milwaukee County (the "Fill Site"), which is located on the south side of College Avenue, City of Oak Creek, Milwaukee County, Wisconsin. The Spoils to be placed at the Fill Site will generally consist of both clean, naturally occurring soils, and fill soils potentially containing low levels of polycyclic aromatic hydrocarbons (PAHs) and lead. MKE is currently evaluating the material for these potential contaminants of concern and will be seeking concurrence from WDNR that that excavated soil may be managed at the Fill Site in accordance with a low-hazard exemption. ### PROJECT SITE ## **Classification of Materials** The Environmental Professional will be responsible for determining if excavated material may be transported directly to the Fill Site or should be stockpiled and characterized for other management. The Environmental Professional will oversee all transport, management, and disposition of Spoils to ensure compliance with applicable state and federal regulations. Spoils shall be characterized prior to transport to the Site using the following methods: - Direct observation during Spoils excavation - Analytical testing of Spoils The Environmental professional will conduct routine field observations/screening to confirm the soil quality, including monitoring excavated Spoils for indications of significant levels of contamination, such as discoloration, solid waste debris, strong odors, or highly elevated responses to the field organic vapor analysis (PID meter). In the unexpected event that soil with obvious staining, odor, or other indications of contamination are exposed during construction, it will be considered unfit for transport to the Fill Site until characterized by the Environmental Professional. The Environmental Professional will be responsible for collecting analytical samples and classifying materials either low-hazard material suitable for placement at the Fill Site or for management at a local licensed solid waste landfill. The Environmental Professional will develop, direct, and oversee a spoils management plan during construction, which may include segregating and temporary stockpiling material. ## **Analytical Requirement and Sampling Frequency** Material deemed suitable for transportation to the Fill Site will be sampled at a frequency of approximately two samples per 1,000 cubic yards of Spoil for a maximum of 80 samples for each of the following parameters: - PAHs USEPA Method 8260 - Total Lead USEPA Method 6010 The sampling frequency may be reduced or increased depending on analytical data collected as the project progresses. ### **FILL SITE** ## **Erosion Control at Fill Site** Construction site erosion & sediment control standards of subch. III or IV of ch. NR 151 for erosion/sediment control or storm water management will be followed during filling activities at the Fill Site. The Environmental Professional will oversee the Fill Site to ensure that Contractors follow an
approved Erosion Control Plan and permit, including dust control. Erosion control measures will be considered as permanent and may not be removed until the final clean soil cover is installed, and vegetative cover has been established and permanently stabilized. ## **Daily Monitoring** The Environmental Professional will monitor the volume of Spoils placed at the Fill Site and prepare a daily log, including photographs and record drawings, to document site grading and the integrity of erosion control devices, with repairs or maintenance noted. The Environmental Professional will also provide signage and site controls to avert unauthorized use of the Fill Site by non-MKE contractors or the general public. ## Reporting The Environmental Professional will prepare a report documenting material transferred to the Fill Site. The report will include the following information. - Soil volumes - Sources - Dates - Analytical laboratory reports and summary tables - Daily reports **END OF SECTION**